TACO Manual

version 1.2

November 2000

Abstract

TACO is a toolkit for implementing distributed object oriented control systems
originally developed at the European Synchrotron Radiation Facility (ESRF)! in
Grenoble (FRANCE). In TACO all control points are represented as devices. De-
vices are objects which belong to a control class. The class implements the control
logic necessary to control the device hardware/software. Devices are served by pro-
cesses called device servers. Device servers are distributed over one or any number
of machines. Clients which need to accesses devices do so through a application pro-
grammer’s interface. The clients can access devices synchronously, asynchronously
or by using events. The network layers are kept entirely hidden from the device
server and client programmer’s by TACO. TACO supports a database (based on
gdbm or Oracle) for storing persistant information and keeping track of where de-
vices are running and an archiving database (based on Oracle). There are 7 levels of
security for controlling client-server access. TACO supports the notion of multiple
TACO control systems. This facilitates management of a large number of devices
on a large site. TACO is available free of charge without warranties under the GNU
Public Licence.

 http://www.esrf.fr

Contents

1 Introduction

by A.Gotz 9
2 What is TACO ?
by A.Gotz 11
2.1 Introduction i e e e e e 11
2.2 System architecture 11
2.3 Manager 11
2.4 Database e e 11
2.5 Device Server Model oo 13
2.6 Application Programmer’s Interface 13
2.7 Data Collector e 13
2.8 Archiving 14
2.9 Security 14
2.10 Multiple Control Systems 14
2.11 Uses of TACO e e e e 14
3 Changes 17
4 Acknowledgements 19
5 Getting Started 21
6 Installing
by A.Gotz 23
6.1 Introduction. 23
6.2 Getting Started Lo 23
6.21 GNUmake i 23
6.2.2 configure L 23
6.23 makeallo 24
6.24 makeinstall L 24
6.2.5 maketest 24
6.2.6 makeclean 24
6.2.7 makeclobber Lo 24
6.2.8 Libraries. 24
6.3 System ProCeSSES v v v v v e e e e e e e e e 25
6.4 Databasetools 25
6.5 Testing L 25
6.6 Problems e e e 25
6.7 Windows 26
7 Platforms 27

4 CONTENTS
8 Device Servers in C++
by A.Gotz and E. Taurel 29
81 Imtroduction 29
8.2 Device Server Model ++o Lo 29
83 Devicerootclass 31
8.3.1 Device.h-includefile L. 31
8.3.2 Device.cpp-sourcecodefile 34
8.4 PowerSupply class - an example superclass 36
8.4.1 PowerSupply.h-includefile 37
8.4.2 PowerSupply.cpp-sourcecodefile. 38
8.5 AGPowerSupply class - an example derived class 38
8.5.1 AGPowerSupply.h-includefile 39
8.5.2 AGPowerSupply.cpp-sourcecode 39
8.6 startup.cpp - an example startup fileo oL 42
8.7 DICDevicewrapperclass 43
8.7.1 D0ICDevice.h-includefile 44
8.7.2 startup.cpp-anexample 46
8.8 Implementation oo 48
8.9 Compilers L 49
8.10 Template Class o o o v it i i it 49
8.11 C++ Programming Style 50
8.12 Advantages of C++ 50
8.13 Disadvantages of C++ Lo 50
8.14 Future developments oL, 50
8.15 Conclusion 51
8.16 Suggested Reading o 51
9 DSAPI
by J.Meyer and A.Gdotz 53
9.1 Imtroduction. 53
9.2 Whatis DSAPI? 53
9.3 Getting Started L 54
9.3.1 “Hello World’ (synchronous) example 54
9.3.2 “Hello World” (asynchronous) example 57
9.3.3 Common Pitfalls 61
934 Nethost 61
9.3.5 Shared Libraries 61
93.6 Makefiles 62
9.3.7 Memory Allocation 64
9.3.8 Advanced Features 66
9.3.9 Timeouts 66
9.3.10 Protocol L 66
9.4 ClLibrary e 67
9.4.1 Synchronous Client APT 67
9.4.2 ASynchronous Client APT, 71
9.4.3 Server L 72
9.4.4 General Purpose Functions 74
9.5 XDR types e 7
9.5.1 Kernel Types 7
9.5.2 Simple CTypes. 77
9.5.3 Combinations of Simple Types 78
9.5.4 Variable Length Arrays, 78
9.5.5 Exotic Types 80
9.6 Changes o o i i e 81

CONTENTS 5

9.6.1 Version 8.0 81
9.6.2 Version7.0 81
96.3 Version6.0 81
96.4 Version 5.1 81
96.5 Version4.l 81
9.6.6 Version3.37. 81
10 Database guide - ndbm
by E.Taurel 85
10.1 Introduction e e e e 85
10.2 Device and resource definition 85
10.2.1 Thedeviceslist 85
10.2.2 Resource definition 86
10.2.3 Domain names and NDBM files 87
10.3 Greta . . o . v o e e e e e e e e e e e e 87
10.3.1 The device window 88
10.3.2 The server window 91
10.3.3 Theresource window v v v v v .. 91
10.3.4 The new server window« v v vt 93
10.3.5 Theload filewindow 93
10.3.6 The Option menu 95
10.3.7 Other features 95
10.4 Resourcefile. e e 95
10.5 Utilities o o e e e e e e e e e 96
10.6 Database administration commands 96
10.6.1 dbfillup 96
10.6.2 dbinfo. 96
106.3 dbread 97
10.7 Database user commands 97
10.7.1 dbupdate oL Lo 97
10.7.2 db.devres 98
10.7.3 db.devinfo. 98
10.7.4 dbservinfo, 98
10.7.5 db.devdel 98
10.7.6 dbresdel 99
10.7.7 dbsservdel 99
10.7.8 db_servunreg 99
10.8 Security commandsl 99
10.8.1 dbmwssecpasswd 99
10.8.2 dbmwsecobjinfo oo oL, 99
10.8.3 dbmsec_userinfo, 99
109 The Clibrary o o i i i e e e e e 100
10.10Resource oriented calls o 100
10.10.1db_getresource() oL 100
10.10.2db_putresource() oo 100
10.10.3db_delresource() 100
10.11Exported device list oriented calls. 101
10.11.1db_getdevexp() . . . « - . . .o o 101
10.11.2db freedevexp()o 101
10.12Device oriented calls L. 101
10.12.1db_getdevlist() Lo 101
10.12.2db_devimport() Lo 101
10.12.3db_devexport()o 102

10.12.4db_deviceinfo() Lo Lo 102

6 CONTENTS
10.12.5db_devicedelete() Lo Lo 102
10.12.6db_devicedeleteres() 102
10.12.7db_getpoller() L 103

10.13Server oriented callso 103
10.13.1dbsveunreg()ol 103
10.13.2db_svecheck() 103
10.13.3dbservinfo() 103
10.13.4dbservdelete() L 104
10.13.5dbservunreg() 104

10.14Database browsing oriented calls 104
10.14.1db_getdevdomainlist() L. 104
10.14.2db_getdevfamilylist()o Lo 104
10.14.3db_getdevmemberlist() Lo L. 104
10.14.4db_getresdomainlist() 105
10.14.5db_getresfamilylist() o L. 105
10.14.6db_getresmemberlist() L. 105
10.14.7db_getresresolist() o 105
10.14.8db_getresresoval()o 106
10.14.9db_getdsserverlist() oo o 106
10.14.1db_getdspersnamelist()o L L. 106
10.14.18b_gethostlist() L 106

10.15Pseudo device oriented calls 106
10.15.1db_psdev.register() 106
10.15.2db_psdev_unregister() 107

10.16Database update calls oL, 107
10.16.1db_analysedata() Lo 107
10.16.2db_upddev() L 107
10.16.3db_updres() 107

10.17Miscellaneous calls oL oL oo 108

10.18Multi TACO control system access « o v v v v v v v v v v v .. 108

11 Events

by A.Gotz 111

11.1 Introduction 111

112 Events o o e 111

11.3 APT .« . o e e e 112
11.3.1 Clientside. o o 112
11.3.2 Serverside 112

11.4 Implementation Lo 113

11.5 Timeouts Lo 113

11.6 Examples e 113

11.7 Performance e 114

11.8 Known problems 115

12 The Signal Interface

by J.Meyer and J-L.Pons 117

12.1 Introduction L 117

12.2 Conventions on Signals oL 117

12.3 The Signal Properties 118

12.4 The Server Side L 118
12.4.1 The Commands to Access Signals. 118
12.4.2 Coding Example using a Multi Signal Object 120

12.5 Reading the Signal Properties without Accessing the Device 124

12.5.1 dev_getsigconfig() L. 124

CONTENTS

12.5.2 dev_get_sig_config fromname()
12.5.3 dev_getsiglist()
12.5.4 dev_getsigsetlist()
12.5.5 dev_get_sigsetread fromname()
12.6 The Client Side
12.7 The Signal Interfaceto HDB
12.8 Conclusion e

13 Access Control and Security

by J.Meyer

13.1 Introduction L

13.2 The Problem

13.3 The Model
13.3.1 Users, Groups and Networks
13.3.2 Access Rights Lo L
13.3.3 Domain, Family or Member
13.3.4 Verification Speed and Reliability

13.4 Integration into TACO

13.5 Complex Access Handling

13.6 Conclusion e e
13.6.1 The Current Implementation
13.6.2 How to get started?,
13.6.3 Pending Problems

14 Standard Makefiles using GNU make (gmake)

by A.Gotz

14.1 Introduction
14.2 Philosophy
14.3 GNU Make Commands it i e
14.4 Standard Symbols oL
14.5 Standard Targets L
14.6 SCripts . .« v v v e e e e e e e e
14.7 Example Makefileo oo oo oo
14.8 Further Reading

15 Basic steps to install and configure a device server
by A.Gdtz

16 A tool to test a TACO control system

by E.Taurel

16.1 Introduction L.
16.2 Usage o v i i e e e e e
16.3 Usage exampleo
16.4 Testing a device servero
16.5 Testing control system kernel servers
16.6 Testing all the device server runningon ahost
16.7 Testing a complete control system

17 Adding Private Commands, Errors and XDR Data Types
by J.Meyer and A.Gdtz
17.1 Introduction e e e e e e
17.2 Dynamic Errors L o oL
17.3 Error Numbers e
17.4 Command Numbers

124
125
125
125
126
128
129

131
131
131
132
132
132
133
134
134
135
136
137
138
141

143
143
143
143
144
144
145
145
152

153

155
155
155
156
156
156
157
158

8 CONTENTS
17.5 Database Support 164
17.6 Time Stamp for Error Messages 164
17.7 The restructured XDR concept 165
17.8 Private XDR Data Types 166

17.8.1 Data Type Numbers 166

17.8.2 What is a Complete XDR Data Type Definition? 166

17.8.3 How to Integrate a New Data Type? 169

17.8.4 Available Data Types 169

17.9 Numbering Limits oL, 170
17.9.1 Master Copies o v i it e 170
17.10Conclusion e e e 171

18 Interfaces 173

A Licence

Chapter 1

Introduction

by A.Gotz

TACO is a toolkit for implementing distributed object oriented control systems. It
has been used at the European Synchrotron Radiation Facility (ESRF) in Grenoble
(FRANCE) to control the accelerator complex and all beamlines. It is also used at
FRM II' in Munich (Germany) to control the beamlines and at the Hartebeesthoek
Radio Astronomy Observatory (HartRAO)? in Hartebeesthoek (South Africa) to
control a 26 meter radio telescope.

TACO can be compared to other distributed object toolkits like CORBA, DCOM
and OPC (on Windows) with the main differences being : (1) TACO is easy to use
and understand, (2) TACO is freely available, (3) TACO is based on ONC/RPC
(now part of the GNU C library), (4) TACO is multi-platform.

In TACO all control points are represented as devices. Devices are objects which
belong to a control class. The class implements the control logic necessary to control
the device hardware/software. Devices are served by processes called device servers.
Device servers are distributed over one or any number of machines. Clients which
need to accesses devices do so through a application programmer’s interface. The
clients can access devices synchronously, asynchronously or by events. The network
layers are kept entirely hidden from the device server and client programmer’s by
TACO. TACO supports a database for storing persistant information and keeping
track of where devices are running.

TACO is used to control an accelerator complex, experimental setups on beamlines
(using synchrotron radiation and neutrons), a radio telescope and other smaller
projects. It is ideal for adding Ethernet control to embedded and non-embedded
devices in a research, industrial or home environment. Refer to the appendix for a
list of existing device servers.

This manual is a compendium of all important TACO documents which have been
written over the years by the various TACO programmers. This way there is only
one single TACO manual for all important TACO documentation. The information
is brought uptodate on a regular basis and should be useful to new and experienced
users of TACO.

TACO can be downloaded from the TACO website® and installed from the source
code. TACO is made available under the GNU Public Licence (see Licence) without
warranties. For news about recent developments in TACO go to the website.

This manual is organised as follows :

 http:/ /www.frmii.de
2http://www.hartrao.ac.za
3http://www.esrf.fr/computing/cs/taco

10

10.
11.
12.

13.
14.
15.

16.

CHAPTER 1. INTRODUCTION BY A.GOTZ

. Changes - list of changes to this manual.

Introduction - this text, should be read by everyone (it’s so short !).

What is TACO ? - provides a brief overview of what TACO is, useful for
newcomers to TACO.

Getting Started - for those who want to get going quickly without having to
read the manual.

Installing - how to install TACO from source code (basically the README
distributed with the source code).

Device Servers in C++ - how to write device servers in C++.

Device Server Application Programmer’s Interface - describes how to write
TACO clients in C and C++.

Database - describes the TACO ndbm database and how to write clients for
the TACO database.

Events - how to use and program events.
Signals - how to use and program normalised data types called signals.
Access Control and Security - a full description of TACO security.

Standard Makefiles - how to write TACO Makefiles using GNU make to main-
tain multiple platforms.

How to install a device server - basic steps on how to install a device server.
testcs - how to test a running TACO system.

Private commands, errors and xdr types - how to extend TACO to add private
commands, errors and data types. system.

Licence - the full text of the GPL licence.

For more information about TACO refer to the website regularly or subscribe to
taco@esrf.fr by sending an email to majordomo@esrf.fr with subscribe taco
in the body of the email.

Chapter 2

What 1s TACO ?
by A.Gotz

2.1 Introduction

TACO is an object oriented control system originally developed at the European
Synchrotron Radiation Facility. The basic idea behind TACO is to treat every
control element as an object on which commands can executed. The objects are
called devices and they are available network wide. Devices are created and stored in
device servers. The commands which can be executed on a device are implemented
in the device class. Device classes can be written in C (using a methodology called
OIC) or C++. The commands are accessed via a small set of C calls referred to as
the application programmer’s interface (DSAPI).

2.2 System architecture

TACO is based on a client-server model. All devices are created and served by device
servers. Clients access devices via a network transparent application programmer’s
interface (DSAPI). In addition to device servers there are so-called system servers-
the manager and database which provide system services. There is no a-priori limit
to the number of device servers and clients. This makes TACO very scalable.

2.3 Manager

The manager is the only fixed point in the whole TACO control system. It is used
as a single entry point to start and stop the control system. All clients (including
device servers) of the control system connect to the Manager before anything else.

2.4 Database

TACO supports a simple database called the resource database where all configura-
tion parameters for devices are stored. The database is served by a database server.
All values are stored as ascii strings which are then converted to the correct types
at runtime in the calling process (device server). All C simple types and array of
simple types are supported. The GNU ndbm database available under Unix and
Windows is used as database.

11

12 CHAPTER 2. WHAT IS TACO ? BY A.GOTZ

|

Device Device
Server 0 o oD
1

device| | devicd | devicd | dewice

1 2 1 3 4 6 o 0

TACO — basic system architecture

Figure 2.1: TACO system architecture

2.5. DEVICE SERVER MODEL 13

2.5 Device Server Model

One of the most fundamental aspects of TACO can be found in the implementation
of device access in the device servers. All device control (input/output) is imple-
mented in the device servers. Device servers are implemented according to a model
known as the device server model (DSM). In the DSM all devices (physical and
logical) are treated as objects. Each object belongs to a device class. The class
implements the actions necessary for each device type. The actions (referred to as
commands) can be executed locally or via the network.

The device class implements methods and actions. The actions can be considered
as special methods which can be executed by local and remote clients. They have a
fixed number of input and output parameters where the parameters can be simple
or complex (self-defined) types.

2.6 Application Programmer’s Interface

The device server model is used for implementing device access in TACO. Users of
the control system on the other hand have a ”black box” view of the control sys-
tem. They access the control system either via a high-level programming language
(C, C++, Tcl, Spec) using the device server Application Programmer’s Interface
(DSAPI) or using one of the graphical applications which have been written.

The DSAPI consists the following basic calls :

1. dev_import()- import or build up a connection to a device

2. dev_putget() - execute a command on a device

3. dev_putget_async() - execute a command n a device asynchronously
4. devfree() - free the device

In addition to these calls there are a number of calls for modifying the network
communication parameters, interrogating the state of an asynchronous command
execution and for managing device security. All network calls to and from the
device server are implemented using the Sun Open Network Computing / Remote
Procedure Call (ONC/RPC). The ONC/RPC is available on all platforms where
the Network File System (NFS) is implemented. The ONC/RPC uses the eXternal
Data Representation (XDR) format to encode data sent on the network.

2.7 Data Collector

The data collector is a huge distributed shared memory for storing intermediate
results of commands from ”real” and ”pseduo” devices. Real devices are devices
which are served by a device server. Pseudo devices are devices which only exist in
the data collector. They have no corresponding device class or server. The data col-
lector system is distributed over multiple computers. It is used to cache command
results for multiple clients. The pseduo devices are a very useful mechanism for dis-
tributing information normally stored in applications or calculated values. Because
the data is cached the data collector can be used to solve bottlenecks which arise
when many clients request the same value from a device.

The data collector has accessed through an object oriented API very similar to the
DSAPI.

14 CHAPTER 2. WHAT IS TACO ? BY A.GOTZ

2.8 Archiving

The long term data archiver in TACO (HDB) is based around a commercial database
(Oracle). Using HDB it is possible to do long term archiving over years with a mini-
mum time resolution of 10 seconds. HDB supports 6 different modes of archiving for
single values and/or groups of values. HDB offers tools for configuring the database
and extracting data. The extracted data are available directly from a C program via
a C API or from a Wingz spreadsheet. HDB also offers tape archiving for offlining
parts of the data base.

2.9 Security

TACO supports secure device access in a network environment. Security is imple-
mented at the device command level. Each device command has its own level of
security. Six levels of security are defined :

e READ

e WRITE

e SINGLE_WRITE

e SUPER_USER

¢ SINGLE_SUPER_USER
e ADMIN

It is possible using TACO security to ”protect” devices from illegal accesses in a
networked environment (e.g. Intranet or Internet) and to allow only those users who
are authorised and who are logged onto authorised computers to access devices.

2.10 Multiple Control Systems

TACO supports the concept of multiple control systems. Each control system has
its own database and device servers. Clients and servers of different control systems
can communicate with each other as if they were part of the same control system.
To specify a device in a diiferent control system a device must be specified with its
full name :

//nethost/d/f/m

Where nethost is the name of the host where the database of the second control
system is running. This concept is sometimes referred to as multi-nethost in the
documentation.

2.11 Uses of TACO

TACO is a toolkit for building distributed objects. Any application which can profit
from encapsulating functionality into objects and distributing them over more than
one host on the network can find a use for TACO. Control systems are one very
good example of this and TACO was developed mainly for doing distributed con-
trol. All control systems need to control hardware. The hardware can be in a the
same computer or more often than not in a variety of computers and black-boxes.
It is the job of the control system to coordinate the different hardware. Examples

2.11. USES OF TACO 15

of hardware are stepper motors, cameras, powersupplies, detectors, adc’s, dac’s but
could even be coffee machines or light switches in the case of home automation.
TACO is ideal for encapsulating hardware functionality in a device server and ex-
porting it on the network e.g. for embedded controllers. These are called tacobozes
amongst TACO users. GNU/Linux is an ideal candidate as underlying operating
system.

TACO can also be used to distribute pure logic where no hardware is involved e.g.
for doing image processing, or for sharing data between applications.

TACO has been used in the research environment (synchrotron radiation sources,
reactors and telescopes) but is also being used to control robots and soon in the
home to automate light switches, heaters, messaging systems etc.

16 CHAPTER 2. WHAT IS TACO ? BY A.GOTZ

Database

Device § erver

(process)

—
DevEerver 7
[root class

{DIC/C++)

Manager

super class

— ::
——————
Powenupply‘
{OLCAC++)
—
—.,
AGFowerSupp D

sub class
{OIC/AC++)
—J

powersupply powersupply
device | { device

Schematic of Device Server Model (DSM) for a typical powersupply

Figure 2.2: TACO Device Server Model for a typical PowerSupply

Chapter 3

Changes

Here is a list of changes in the TACO manual :
e V1.1

— added section on Changes (this section).

— documented the use of dynamic error messages (cf. chapter on DSAPI
and chapter on Private Command and Errors).

17

18

CHAPTER 3. CHANGES

Chapter 4

Acknowledgements

A lot of people have contributed to TACO since its beginning. The following people
have contributed to the kernel of TACO in the form of system programming, bug

fixes,

ports etc :
Martin Diehl (FRMII) - bug fixes

Andy Gotz (ESRF) - device server model, asynchronism, events, dsapi
Markhu Karhu (ESRF) - (original) ndbm database server

Wolf-Dieter Klotz (ESRF) - Windows port

Jens Meyer (ESRF) - dsapi, dsxdr, security, manager

Jon Quick (HartRAOQ) - bug fixes

Bjorn Pederson (FRMII) - bug fixes, improvements to events

Emmanuel Taurel (ESRF) - rtdb, Oracle and ndbm database server, dbapi,
hdb

The following people have written client interfaces to TACO :

Marie-Christine Dominguez (ESRF) - Python clients
Laurent Farvacque (ESRF) - Mathlab

Andy Goétz (ESRF) - Labview

Jens Meyer (ESRF) - Python servers

Gilbert Pepellin (ESRF) - Tecl

Faranguiss Poncet (ESRF) - xdevmenu

Gerry Swislow (CSS) - SPEC

TACO would not be of much use without the device servers therefore it is only fair
to mention the (long and incomplete) list of device server programmers :

A.Beteva (ESRF), D.Carron (ESRF), J.M.Chaize (ESRF), M-C.Dominguez
(ESRF), F.Epaud (ESRF), L.Farvacque (ESRF), D.Fernandez (ESRF), A.G6tz
(ESRF), S.Hunt (SLS), W.D.Klotz (ESRF), M.Konijnenberg (AFOM), P.Makijarvi
(ESRF), J.Meyer (ESRF), J.Neuhaus (FRM IT), W.Ohme (Rossendorf), B.Pederson
(FRM II), C.Penel (ESRF), M.Perez (ESRF), M.Peru (ESRF), J.L.Pons (ESRF),
J.Quick (HartRAO), B.Regad (ESRF), V.Rey (ESRF), L.Roussier (Lure),
B.Scaringella (ESRF), M.Schofield (ESRF), F.Sever (ESRF), E.Taurel (ESRF),
P.Verdier (ESRF), R.Wilcke (ESRF), H.Witsch (ESRF)

19

20

CHAPTER 4. ACKNOWLEDGEMENTS

Chapter 5

Getting Started

How to get started with TACO ? The best way is to download it and install it
first. Once it is compiled for your platform start the TACO manager and database
servers. Start a test device server and client to see if everything is working. The
final step is to write your own device server for your hardware and own client for
your application and start them. Voila you have a working TACO control system !
Here is a step by step description of the above recipe :

1. downloading - TACO can be downloaded from
ftp://ftp.esrf.fr/pub/computing/cs/taco/src_release_Vx.y.tar.gz

where x.y is the latest version of the TACO source code release (2.6 in July
2000). Download using anonymous ftp (login=anonymous, password=your
email address) e.g.

cd ~/pub/cs/taco
bin
get src_release_Vx.y.tar.gz

quit

2. unpacking - unpack the source code in a directory where you have sufficient
free space for compiling using tar e.g.

tar -xzvf src_release_Vx.y.tar.gz

3. compiling - position your TACO home directory (DSHOME) to the place
where you want TACO to be installed (normally the same directory where
you unpacked it), run configure and then make and make install :

export DSHOME=‘pwd‘
./configure
make all
make install
4. testing - test TACO has correctly compiled and installed :

make test

write a device server - copy the test device server or a template and adapt it
to your hardware, compile it

21

22

CHAPTER 5. GETTING STARTED

5. install device - create a device entry in the TACO database :
db_update TEST/mydevice.res
start TACO - start TACO manager and database :
etc/taco.startup

6. start device server - position NETHOST and start your device server

export NETHOST=‘hostname*
myds test&

7. start your client - start your client and test your device server !

Chapter 6

Installing
by A.Gotz

6.1 Introduction

TACO has been developed at the ESRF about 10 years ago but has only recently
been started to be used by groups external to the ESRF. It is obvious that to give
these external groups as much autonomy as possible they need access to the source
code. To satisfy this request the TACO source code release has been prepared. It
is basically a copy of the source code development tree maintained at the ESRF.
In order to make a quick release not much effort has gone into changing up the
directory tree structure and source code. What you have on your disk is a copy of
the latest release of the Unix development tree. The main aim is to allow external
users to have access to the source code and (re)compile for whatever (Unix) platform
they need to. For Windows compilation look under WINDOWS.

6.2 Getting Started

6.2.1 GNU make

The release is organised with a main Makefile which calls the underlying Makefiles
for compiling the different packages. All the underlying Makefiles are based on
the GNU Make which supports conditional statements. Before trying to compile
anything you must have a version of GNU make which is accessible from your
$PATH environment when you type "make”. GNU make is standard with Linux.
For other platforms you can find a release of GNU make in the directory ” gmake”
with this release. Configure, compile and install it for your platform if you don’t
have it.

6.2.2 configure

In order to simplify compilation + installation a simple script called ”configure” is
povided which prompts for what platform you want to compile on. Run configure
by typing ”./configure” and answer the questions. Before running configure set the
environment variable DSHOME It will also prompt for the TACO home directory
($DSHOME) where you plan to keep all the TACO libraries and include files. This
could be anywhere. At the ESRF we normally have a user account ”dserver” which
we use as home directory for TACO.

23

24 CHAPTER 6. INSTALLING BY A.GOTZ

If you need the TACO libraries to be compiled with additional CFLAGS (e.g.) -
D_REENTRANT) for your system then it is possible to set and environment variable
EXTRACFLAGS before calling configure. This will be added to CFLAGS during
compilation of all libraries (DSAPI, DSXDR, DBAPI). The configure script prompts
for this flag.

6.2.3 make all
Once you have configured the platform you can call “make all” to make all the
libraries and system processes.

6.2.4 make install

Will copy the libraries and include files to SDSHOME/1ib/$0S and $DSHOME /include.
Some of the libraries and incldue files are copied when you do ”make all” as part of
the TACO boot-strapping process. Will also remake dsapi and dsapi++ because of
the "make clean” rule in the makefile.

6.2.5 make test

Will fill the TACO database up with some default resources, start a TACO Manager
and then start a test device server (Inst_verify) and client (Inst_verify_menu).

6.2.6 make clean

Will remove all object files.

6.2.7 make clobber

Will do a clean and remove all libraries. It is a good idea to do a clobber before
compiling on a new platform to avoid mixing object files and/or libraries.

6.2.8 Libraries

The TACO system has three fundamental libraries - DSAPI, DSXDR and DBAPI.
These libraries are fundemental to creating any TACO server or client. The source
code release contains all the source code for them and Makefiles for generating
archive and shared library versions. They can be found in the following directories

DSAPI - ./dserver/system/api/apilib/src
./dserver/classes/main/src
./dserver/classes++/device/src

DSXDR - ./dserver/system/xdr/src
DBAPI - ./dbase/src

The libraries are installed in :
./1ib/$0S

The corresponding include files in :

./include
./include/private

6.3. SYSTEM PROCESSES 25

6.3 System processes

TACO requires three system process to run - the Manager, Database and Message
servers. The source code release contains the source code and Makefiles to generate
them. They can be found in :

MANAGER - ./dserver/system/manager/src
DBSRVR - ./dbase/server/src

MSGSRVR - ./dserver/system/msg/src
Once compiled they are installed in :

./system/bin/$0S

6.4 Database tools

TACO supports a simple database based on the GNU DBM library. DBM is based
on a single key and one file per table. Some tools are provided for analysing the
contents of the database. They can be found in :

DBTOOLS - ./dbase/tools/src
Once compiled they are installed in :

./system/bin/$0S

6.5 Testing

This release assumes you have a running TACO installation and know a bit about
TACO. If this is your case all you need to do is point your shared library path
(SLD_LIBRARY_PATH on Linux/Solaris) to the directory where you have created
the shared libraries and restart your device server/client. Alternatively you can
recompile you device server/client if you are using archive libraries. The main
advantage of the source code release is you will be able to modify and generate new
versions of the TACO libraries at will now.

If you have never used TACO before then you better send an email to ”taco@esrf.fr”
for more detailed instructions. In brief you have to start setup a database, start
the Manager and then start as many device server/clients as necessary. Device
server/clients which know about your hardware will have to be written. An ex-
ample for C++ can be found in dserver/classes++ /powersupply. It consists of a
superclass PowerSupply.cpp and the subclass AGPowersupply.cpp- A second exam-
ple of a real device server for controlling a serial line under Linux can be found in
dserver/classes++ /serialline. An example for C (using the Objects In C methodol-
ogy) can be found in dserver/classes/instverify.

6.6 Problems

Of course you will have some. Please report them to ”taco@esrf.fr”. and we will do
our best to answer you and include your problem in this section in the future.
Here is a (non-exhaustive) list of problems you can encounter :

26 CHAPTER 6. INSTALLING BY A.GOTZ

o the database server does not compile correctly - the most likely reason is that
you do not have the a version of the GNU C++ compiler which includes the
standard C++ library. Make sure you have it. You can download it from
the web for Solaris from http://www.sunfreeware.com. For Linux it comes
packaged with the distributions SuSE 6.1 and RedHat 5.2. If you do not have
one of these distributions you can download the egcs compiler (the new gcc)
from http://egcs.cygnus.com.

6.7 Windows

This source code release is intended only for Unix platforms. If you need the Win-

dows port which uses Visual C++ then refer to the web page http://www.esrf.fr/computing/cs/taco/dsapiNT
where you can find a source code distribution for Windows (based on DSAPI

V5.15).

Chapter 7

Platforms

TACO is actively supported and used on the following platforms :

Linux/x86 - following distributions have been tested

— SuSE

— Mandrake
— RedHat
— Debian

but there is no reason why TACO shouldn’t compile and run on any Linux
distribution.

Linux/68k - using the Debian distribution on MVME-162’s and MVME-
167’s Motorola’s

Solaris - versions 2.5 and 2.7 are supported using the native Solaris compilers
and GNU gcc compilers

HP-UX - version 9.x and 10.20
OS89 - version V3.03 on VME
Windows - 95/98 and NT using Visual C++ 5.0

The following platforms have been ported to in the past but are not used anymore
and are therefore not uptodate :

VxWorks - version 5.x
LynxOS - version ?

Irix - version 6.5

The latter platforms could be updated if need arises.

27

28

CHAPTER 7. PLATFORMS

Chapter 8

Device Servers in C++
by A.Gotz and E.Taurel

8.1 Introduction

Device Servers are the distributed objects which form the heart of the TACO control
system. They were designed to be written in C based on a technique called Objects
in C (OIC). This technique was inspired by the Widget model in the X11 Intrinsics
Toolkit (Xt). This chapter describes how to implement Device Servers in C++.
This chapter will describe the first C++ implementation of Device Servers taking
as an example the AGPowerSupply class. The advantages and disadvantages of
this new implementation will be discussed plus the possible future directions which
sh/could be explored.

8.2 Device Server Model ++

The Device Server Model (DSM) provides a framework for implementing and dis-
tributing objects called devices in a networked environment. The original DSM
(as described in The Device Server Programmer’s Manual) was comprised of the
following elements :

1. the device,

2. the server,

3. Objects in C,

4. the root class,

5. the device class,

6. the resource database,
7. the commands,

8. local access,

9. network access, and

10. the applications programmer’s interface.

29

30 CHAPTER 8. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

Because the DSM has proved to be successful and in order to stay backwards com-
patible the DSM has been kept as is and only the OIC part has been replaced.
However replacing OIC by C++ has meant a new terminology and technology for
implementing the individual elements of the DSM. In the C++ implementation the
invidual elements of the DSM are implemented as follows :

1.

a device is an instantiation of the base C++ class Device,

a server is an individual process in the classical operating system sense (here
nothing has changed),

the root class is the C++ base class Device,

a device class is a C++ class derived from the public base class Device (e.g.
AGPowerSupply),

the resource database is a database accessed via a database api (here noth-
ing has changed),

commands are C++ protected member functions implemented in the device
class,

local access is implemented via the standard api call dev_putget () or via the
virtual Command method implemented in the base class Device (the equivalent
of the old dev_cmd () function),

network access is provided via the standard api call dev_putget (),

the applications programmer’s interface is the same as before i.e. the
client does not know if the server is implemented in OIC or a C++

In addition to the above basic elements the following additional points can be made
about the C++ implementation of the DSM :

e the class initialise function (called once for every class) although not sup-

ported by the C++ language has been retained in order to allow efficient im-
plementation e.g. for the retrieving of class resources, and is implemented as
a virtual private method in the base class Device,

the object initialise method has been suppressed,

the state machine has (of course) been retained and is implemented as a
virtual public method in the base class,

a get resource method has been added as a standard method in all in order
to retrieve resources from the static database.

C++ does not support class variables in the same manner OIC does i.e. one
copy of a variable per class and derived class common to all instantiations
of that class. Class variables were therefore transformed into static class
members, static variables (with file scope) or in the worst case a copy of the
variable was stored in each object.

8.3. DEVICE ROOT CLASS 31

8.3 Device root class

All device classes must be derived from the Device base class (also known as the
root class). The Device class replaces the old DevServer class. The server part
is implemented in the rpc stubs and in the standard Device Server main(). This
distinction between what is a device and what is a server creates a clean separation
between two functionally different aspects of the DSM.

The following comments can be made about the present implementation :

e Deviceisimplemented as an abstract class (one of its members, GetResources,
is a pure virtual function). This means Device cannot be instantiated and
can only serve as a base class for derived classes.

e the new type DeviceCommandListEntryreplaces the old DevCommandListEntry.

e a command is defined as a pointer member functions of the Device class (or
a class publicly derived from Device) which takes as arguments two void and
one long pointer and returns a long status. The void pointers refer to argin
and argout and have to be casted to the correct type inside the command.

e the standard commands State() and Status() are implemented as virtual
methods in the base class. This means that any derived class which does not
implement these commands automatically inherits the base class implemen-
tation.

e 3 dummy StateMachine method is implemented as virtual method which
always returns DEVOK.

e as mentioned above the object initialise as something different from the object
create method has been suppressed from the DSM. This has been done for
simplicity reasons (in the past most Device Server Programmer’s did not know
what the difference between the two were) and also to be more in the spirit of
C++. All initialisation is now done at object create time in the class constructor
method.

e most of the variables required by the old DevServer implementation have been
retained for compatibility reasons e.g. class_name, dev_type, these are also
needed by the api when exporting a device.

e each instantiation object of a class derived from Device has a pointer to the
commands list and the number of commands. This was unavoidable because
C++ does not support the notion of class variables.

8.3.1 Device.h - include file

The Device interface is defined in the public include file Device.h and is listed
below.

%\include{/segfs/dserver/dev/classes++/device/include/Device.h}
//static char RcsId[] = "$Header: /segfs/taco/doc/manual/cppdserver.tex,v 1.1 2000/07/24 09:

[/ Ak ok sk sk o o o sk ks o s o o s s o e o ks o s o e o o s ko o sk o ks ook s o o ko o sk o ok o
// File: Device.h

// Project: Device Servers in C++

//

32

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

CHAPTER 8. DEVICE SERVERS IN c++ BY A.GOTZ AND E.TAUREL

Description: public include file containing definitions and declarations
for implementing the device server Device base class in C++
(DeviceClass) .

Author(s): Andy Goetz

Original: February 1995

$Revision: 1.1 $

$Date: 2000/07/24 09:42:46 $

$Author: goetz $

$Log: cppdserver.tex,v $
Revision 1.1 2000/07/24 09:42:46 goetz
Initial revision

//+**

#ifndef _DEVICE_H
#define _DEVICE_H

// Some remarks about the Device class definition

//
//
//
//
//
//
//
//
//
//
//
//
//
//

1 -

Members class_name and dev_type should not be defined as static members
otherwise, there will be only one copy of them for the device server
process and it is not possible to correctly handle device server

with several embedded classes

Therefore, don’t forget to initialize them in the object constructor
and not in the class_initialise function which is executed only once
for a class.

The State and Status member function are declared as public. This is due
to the 0S-9 C++ compiler. To reuse them in a device derived class

(by specifying a pointer to them in the command list), the 0S-9 compiler
needs the function to be declared as public !!

class Device {

//

// private members

//

private :

//

// private virtual functions which should be defined in each new sub-class

//

8.3. DEVICE ROOT CLASS 33

static short class_inited;

virtual long ClassInitialise(long *error);
virtual long GetResources (char *res_name, long *error) = 0; // pure virtual

//
// public members

//

public:

typedef long (Device::* DeviceMemberFunction) (void*, void*, long*);
typedef struct _DeviceCommandListEntry {

DevCommand cmd;
DeviceMemberFunction fn;
DevArgType argin_type;
DevArgType argout_type;
long min_access;
}

DeviceCommandListEntry;
typedef struct _DeviceCommandListEntry *DeviceCommandList;

virtual long State(void *vargin, void *vargout , long *error);
virtual long Status(void *vargin, void *vargout, long *error);

//

// class variables

//

char* class_name;
char dev_type[24];

char* name;

Device (DevString name, long *error) ;

“Device ();

virtual long Command (long cmd,
void *argin, long argin_type,
void *argout, long argout_type,
long *error);

long Get_min_access_right(long,long *,long *);

void Get_command_number (unsigned int *);

long Command_Query(_dev_cmd_info *,long *);

//
// protected members - accessible only be derived classes

//

protected:

34

//
//
//

};

CHAPTER 8. DEVICE SERVERS IN c++ BY A.GOTZ AND E.TAUREL

the following virtual commands must exist in all new sub-classes

virtual long StateMachine(long cmd, long *error) ;

long state; // device state

long n_state; // convenience variable for storing next device state
long n_commands;

DeviceCommandList commands_list;

#define TYPE_DEFAULT "DevType_Default"
#define TYPE_INIT "DevType_"

#endif /* _DEVICE_H x*/

8.3.2 Device.cpp - source code file

The following points can be made about the Device class source code implementa-
tion :

e the Device constructor Device: :Device (listed below) defines a command
list containing two commands - DevState and DevStatus. This command list
will normally be overridden by the derived device class but in the case that
the device class defines no command list the derived class will have at least
the two standard commands.

e the ClassInitialise method is called from the constructor via the static
variable class_inited.

//4
//
// Function: Device: :Device()

//

// Description: constructor to create an object of the base class Device
//

// Input: char *name - name (ascii identifier) of device to create

//

// Output: long *error - error code returned in the case of problems

//
//-

Device: :Device (char *devname, long *error)
{
static DeviceCommandListEntry dev_cmd_list[] = {
{DevState, &Device::State, D_VOID_TYPE, D_SHORT_TYPE},
{DevStatus, &Device::Status, D_VOID_TYPE, D_STRING_TYPE},
};
static long no_commands = sizeof (dev_cmd_list)/
sizeof (DeviceCommandListEntry) ;

dev_printdebug (DBG_TRACE, "Device: :Device() called, devname = %s\n",devname) ;

8.3. DEVICE ROOT CLASS 35

*error = DS_OK;

//
// check if ClassInitialise() has been called
//
if (Device::class_inited !'= 1)
{
if (Device::ClassInitialise(error) != DS_OK)
{
return;
}
}
//

// initialise class_name (this should be done here because class_name
// is NOT a static member of the device class for the case of device
// server with several embedded classes. Also initialises, device

// type

//

this->class_name = "DeviceClass";
sprintf (this->dev_type, TYPE_DEFAULT) ;

//

// initialise the device name

//

this->name = (char*)malloc(strlen(devname)+1);
sprintf (this->name,"%s",devname) ;

//

// initialise the commands list

//

this->n_commands = no_commands;
this->commands_list = dev_cmd_list;

this->state = DEVON;

e one of the most important member methods of the Device class is the Command
method which searches for the required command in the device class’ com-
mand list, calls the state machine and then calls the command. One not so
clean feature of this implementation is that the type checking is done by the
method and not by the C++ compiler but this has so far proved unavoidable.
Command is defined to virtual so that it can be overloaded by any of the sub-
classes. This is necessary for the 0ICDevice class which needs to call the (old)
OIC DevMethodCommandHandler. Normally no other classes need to overload
the Command method.

long Device::Command (long cmd, void* argin, long argin_type,

36 CHAPTER 8. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

void* argout, long argout_type, long *error)

int i;
DeviceMemberFunction member_fn;

printf ("Device: :Command() called, cmd = %d\n",cmd);
// add code to execute a command here

for (i = 0; i < this->n_commands; i++)

{
if (cmd == this->commands_list[i].cmd)
{
if (argin_type != this->commands_list[i].argin_type |
argout_type != this->commands_list[i].a
{
*error = DevErr_IncompatibleCmdArgumentTypes;
return(DS_NOTOK) ;
}

// check state machine
if (this->StateMachine(cmd,error) !'= DS_OK)

{
return(DS_NOTOK) ;

}

// now execute the command

member_fn = this->commands_list[i].fn;

if ((this->*member_fn) (argin,argout,error) != DS_0K)
{
return(DS_NOTOK) ;
}
else
{
return(DS_0K) ;
}

*error = DevErr_CommandNotImplemented;
return(DS_NOTOK) ;
};
8.4 PowerSupply class - an example superclass
At the ESRF the functionalities of a standard powersupply class have been defined

(cf. DSN/078) and are implemented in the superclass PowerSupplyClass in OIC.
This section describes an equivalent C++ implementation which respects the ESRF

8.4. POWERSUPPLY CLASS - AN EXAMPLE SUPERCLASS 37

standard.
The following points can be made about this implementation :

e PowerSupply is defined as an abstract class (it has one pure virtual func-
tion (StateMachine)). This means it can only be used as a base class for
other derived classes and cannot be instantiated,

e the exact same types for class member variables were used for the C++ imple-
mentation as for the previous OIC implementation, the only difference being
that they were defined as protected which means that they are only visible
to classes derived from the PowerSupply class,

e CheckReadValue is implemented as a protected method to be used only by
classes derived from the PowerSupply class.

8.4.1 PowerSupply.h - include file

class PowerSupply : public Device {
// private members
private :

long ClassInitialise(long *error);
long GetResources (char *res_name, long *error);

// protected members
protected:

float set_val;
float read_val;
long channel;

long n_ave;

long fault_val;
float cal_val;
float conv_val;
char *conv_unit;
float set_offset;
float read_offset;
float set_u_limit;
float set_1_limit;
float idot_limit;
long polarity;
float delta_i;
long time_const;
long last_set_t;

long CheckReadValue(DevBoolean *check, long *error);
virtual long StateMachine(long cmd, long *error)=0; // pure virtual function
// public members

public:

38 CHAPTER 8. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

PowerSupply (char *name, long *error);
“PowerSupply O;

};

8.4.2 PowerSupply.cpp - source code file

The implementation of PowerSupply class is very simple and does not do much. One
interesting point however is the GetResources method which retrieves the delta_i
and time_constant resources. Because this is called directly from the constructor
during initialisation it is transparent to the sub-classes. This was not possible in
the OIC and demonstrates the advantage of using C++. Here is the listing of the
GetResources method :

long PowerSupply::GetResources (char *res_name, long *error)
{
static db_resource res_powersupply[] = { {"delta_i", D_FLOAT_TYPE},
{"time_constant", D_LONG_TYPE}, };
static unsigned int res_powersupply_size = sizeof (res_powersupply)/
sizeof (db_resource);
register int ires;

*xerror = DS_OK;

//

// setup the db_resource structure so that we can interrogate the database
// for the two resources "delta_i" and "time_constant" which are needed

// by all powersupplies to implement the read<>set check

//

ires = 0;
res_powersupply[ires].resource_adr

&(this—>delta_i); ires++;
&(this—>time_const); ires++;

res_powersupply[ires].resource_adr

if (db_getresource(res_name, res_powersupply, res_powersupply_size, error)

!= DS_OK)
{
printf ("PowerSupply: :GetResources() db_getresource failed, error %d\n",
xerror) ;
return(DS_NOTOK) ;
}

return(DS_OK) ;

8.5 AGPowerSupply class - an example derived class

AGPowerSupply is an example of a device class derived from the PowerSupply class,
it simulates a real powersupply and is one of the simulators used by the application
programmers to simulate the machine.

The class definition can be found in the public include file (AGPowerSupply.h). The
following comments can be made on present implementation :

8.5. AGPOWERSUPPLY CLASS - AN EXAMPLE DERIVED CLASS 39

e the State command is inherited from base class Device,

e the Status command implemented in the AGPowerSupply derived class over-
rides the base class implementation.

8.5.1 AGPowerSupply.h - include file
class AGPowerSupply : public PowerSupply {

// private members
private :

long ClassInitialise (long *error);
long GetResources (char *res_name, long *error);

// protected members
protected:
// commands

long 0ff (void *argin, void *argout, long *error);

long On (void *argin, void *argout, long *error);

long Status (void *argin, void *argout, long *error);
long SetValue (void *argin, void *argout, long *error);
long ReadValue (void *argin, void *argout, long *error);
long Reset (void *argin, void *argout, long *error);
long Error (void *argin, void *argout, long *error);
long Local (void *argin, void *argout, long *error);
long Remote (void *argin, void *argout, long *error);
long Update (void *argin, void *argout, long *error);

long StateMachine (long cmd, long *error);
// public members
public:

AGPowerSupply (char *name, long *error);
~“AGPowerSupply ();

};

8.5.2 AGPowerSupply.cpp - source code

Below are some examples taken from the AGPowerSupply.cpp source code which
illustrates some of the details of the C++ implementation.

e the notion of template has been kept in the present C++ implementation. This
is done in a somewhat unorthodox manner because of the fact that C++ does
not implement this feature. A global pointer to a copy of an AGPowerSupply
is defined in static address space. The pointer is initialised to point to a block
of memory of size sizeof (AGPowerSupply) allocated in ClassInitialise.
The individual fields of the template are then initialised to the class defaults

40 CHAPTER 8. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

in ClassInitialise. The reason for this unorthodox approach is because it
is not possible to address an object which does not exist (if you understand
what I mean !)!

long AGPowerSupply::ClassInitialise (long *error)
{
static AGPowerSupply *agps_template = (AGPowerSupply*)malloc(sizeof (AGPowerSu

PP1y));

int iret=0;

printf ("AGPowerSupply::ClassInitialise() called\n");
// AGPowerSupplyClass is a subclass of PowerSupplyClass

class_name = (char*)malloc(strlen("AGPowerSupplyClass")+1);
sprintf (class_name,"AGPowerSupplyClass");

class_inited = 1;

// initialise the template powersupply so that DevMethodCreate has
// default values for creating a powersupply, these values will be
// overridden by the static database (if defined there).

// default is to start with powersupply switched OFF; the state

// variable gets (ab)used during initialisation to interpret the
// initial state of the powersupply: 0==DEVOFF, 1==DEVON. this is
// because the database doesn’t support the normal state variables
// like DEVON, DEVSTANDBY, DEVINSERTED, etc.

agps_template->state = 0;
agps_template->n_state = agps_template->state;
agps_template->set_val = 0.0;

agps_template->read_val = 0.0;

agps_template->channel = 1;

agps_template->n_ave = 1;

agps_template->conv_unit = (char*)malloc(sizeof ("AMP")+1);
sprintf (agps_template->conv_unit,"AMP");
agps_template->set_offset = 0.0;
agps_template->read_offset = 0.0;
agps_template->set_u_limit = AG_MAX_CUR;
agps_template->set_1_limit = AG_MIN_CUR;
agps_template->polarity = 1.0;

// interrogate the static database for default values

if (GetResources ("CLASS/AGPS/DEFAULT" ,,error))
{
printf ("AGPowerSupply: :ClassInitialise(): GetResources() failed, error %d\
n",error);
return(DS_NOTOK) ;

lif agps_template was defined as a new AGPowerSupply the first time the constructor is called
it will try to access agps_template->something but agps_template does not exist yet and will
generate a bus error

8.5. AGPOWERSUPPLY CLASS - AN EXAMPLE DERIVED CLASS 41

agps_template->state = state;
agps_template->set_val = set_val;
agps_template->read_val = read_val;
agps_template->channel = channel;
agps_template->n_ave = n_ave;
agps_template->conv_unit = (char*)malloc(sizeof (conv_unit)+1);
sprintf (agps_template->conv_unit,conv_unit);
agps_template->set_offset = set_offset;
agps_template->read_offset = read_offset;
agps_template->set_u_limit = set_u_limit;
agps_template->set_1_limit = set_1l_limit;
agps_template->polarity = polarity;

printf("returning from AGPowerSupply::ClassInitialise()\n");

return(iret) ;

}

e the command list references the two commands DevState and DevStatus
in the base class Device. Because they are defined in the base class as
virtual C++ uses dynamic binding to resolve them and therefore at run-
time Device::DevState and AGPowerSupply: :DevStatus are executed re-
spectively.

static Device::DeviceCommandListEntry commands_list[] = {
{DevState, (DeviceMemberFunction)&Device::State, D_VOID_TYPE, D_SHORT_TYPE},
{DevStatus, (DeviceMemberFunction)&Device::Status, D_VOID_TYPE, D_STRING_TYPE},

e simple commands (e.g. which don’t take input or output parameters) have
not changed much in their implementation e.g. AGPowerSupply: :0ff looks
as follows :

long AGPowerSupply::0ff (void *vargin, void *vargout,long *error)

{
printf ("AGPowerSupply::0ff (¥s) called\n",name);

*error = DS_OK;
read_val = 0.0;
set_val = 0.0;

state = DEVOFF;

return (DS_OK);

e commands which take input or output parameters have to cast their pa-
rameters from void to pointers to the correct type. Here is an example of
AGPowerSupply: :Update which calls two other commands to return the state,
set and read value :

long AGPowerSupply::Update (void *vargin, void *vargout, long *error)

42 CHAPTER 8. DEVICE SERVERS IN C++

DevStateFloatReadPoint *vargout_sfrp;
DevShort darg_short;
DevFloatReadPoint darg_ frp;

printf ("AGPowerSupply::Update(%s) called\n",name);

vargout_sfrp = (DevStateFloatReadPoint*)vargout;

// update state

State(NULL, &darg_short, error);
vargout_sfrp->state = darg_short;

// get latest set and read

8.6 startup.cpp - an example startup file

ReadValue(NULL, &darg_frp, error);
vargout_sfrp->set = darg_frp.set;
vargout_sfrp->read = darg_frp.read;

return(DS_0K) ;

BY A.GOTZ AND E.TAUREL

Any device which has to be served by a Device Server has to be created and ex-
ported as usual in a startup procedure. Listed below is an example startup() for
the AGPowerSUpply class which reads a list of devices form the static database,
instantiates them, executes a command on them (to see if they are alive) and then
exports them.

#include
#include
#include
#include
#include

<API.h>
<Device.h>
<DevServer.h>
<PowerSupply.h>
<AGPowerSupply.h>

#define MAX_DEVICES 1000

extern "C" long startup(char *svr_name, long *error);

unsigned

int n_devices, i;

Device *device[MAX_DEVICES];

long startup(char *svr_name, long *error)

{

char **dev_list;

short

state;

long status;

printf ("startup++() program to test dserver++ (server name

= %s)\n",svr_name);

8.7. OICDEVICE WRAPPER CLASS 43

// get the list of device name to be served from the static database

if (db_getdevlist(svr_name,&dev_list,&n_devices,error))

{
printf ("startup(): db_getdevlist() failed, error %d\n",*error);
return(-1);

}

printf("following devices found in static database: \n\n");

for (i=0;i<n_devices;i++)

{
printf ("\t%s\n",dev_list[i]);

T

// now loop round creating and exporting the devices

for (i=0; i<n_devices; i++)

{
device[i] = new AGPowerSupply(dev_list[i],error);
if ((device[i] == 0) || (*xerror '= 0))
{

printf ("Error when trying to create s device\n",dev_list[i]);
return(DS_NOTOK) ;
}

else

{

// test calling Device::State via Device::Command method

device[i]->Command (DevState, NULL, D_VOID_TYPE, (void*)&state, D_SHORT_TYPE, error)
// export the device onto the network

status = dev_export((char*)device[i]->name, (Devicex)device[i], (long*)error) ;

printf ("startup++() dev_export() returned %d (error = %d)\n",status,*error);
}
}

return(DS_0K) ;

8.7 0ICDevice wrapper class

Writing device servers in C++ is no problem for new classes which do not depend on
any existing classes. However one of the main aims of object oriented programming
is code reuse. Seeing as the majority of classes at the ESRF were written before
C++ was available on OS9 they were written in C using the Objects In C (OIC)
methodology. It is vital therefore that C++ classes can (re)use OIC classes.

Two possibilities of including OIC classes in C++ considered were :

1. calling the OIC C functions ds__create(), ds_method finder() directly
from C++,

44 CHAPTER 8. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

2. writing a C++ wrapper class for OIC which ”wraps” the OIC DevServer
objects as a C++ Device objects.

The first method (C++ calls OIC C directly) poses the problem of what happens
when the programmer wants to export a mixture of C++ and C objects onto the
network ? The device server main() routine assumes can manage a list of either all
OIC DevServer’s or all C++ Device’s but not both. It was decided therefore to use
the second method (C++ wrapper class) and write a class called 0ICDevice.
0ICDevice is a C++ wrapper class for OIC classes. OICDevice is a generic class
for creating objects of any OIC class, it is derived from the Device root class. The
result is a C++ 0ICDevice object which has a pointer to the actual OIC object.
Seen from the C++ programmer’s point of view it appears as a C++ object. It
has the same interface as all other C++ objects dervied from Device. Executing
commands on the object will result in the OIC command method handler being
called.

Some points to be aware of when wrapping your OIC objects with OICDevice :

e 0ICDevice implements basic versions of DevState and DevStatus which ac-
cess the OIC device state,

e the actual state of the OICDevice object is stored in the OIC object, to access
it use (short)this->ds->devserver.state (and NOT the state variable in
the Device part of the object),

e to access the OIC object use the pointer stored in the OICDevice object part
i.e. this->ds (use this for example to access any fields of the OIC object e.g.
((PowerSupply)this->ds)->powersupply.set_val),

e to access the OIC object’s class use the pointer stored in the OICDevice object
part i.e. this->ds class,

Note the 0ICDevice class is only a wrapper class for encapsulating OIC objects and
not classes. Because of the differences between the OIC and C++ implementations
it is not possible to derive new C++ classes from existing OIC classes as sub-classes.
It is however possible to instantiate OIC classes in C++. If you want to use an
existing OIC class as a super-class for C++ then you have to rewrite the OIC class
in C++.

8.7.1 0ICDevice.h - include file

Here is the source code of the 0ICDevice.h header file which defines the interface
to the OICDevice class :

//static char RcsId[] = "$Header: /segfs/taco/doc/manual/cppdserver.tex,v 1.1 2000/07/24 (
/) /KR ok ok sk o ko ok sk o ok ok ok ok ok o sk o ok ok o ok o ko ko o sk K ok o ko ok ok ok sk ok ok o ko ok sk ok sk o ok o ko ok o sk o ok ok o ok o sk ok o

//

// File: 0ICDevice.h

//

// Project: Device Servers in C++
//

// Description: public include file containing definitions and declarations
// for implementing 0ICDevice class in C++. The 0ICDevice class

// wraps (old) 0IC classes in C++ so that they can be used

// in C++ classes derived from the Device base class.

//

// Author(s): Andy Goetz

8.7. OICDEVICE WRAPPER CLASS 45

//

// Original: November 1996

//

// $Revision: 1.1 §

//

// $Date: 2000/07/24 09:42:46 $

//

// $Author: goetz $

//

// $Log: cppdserver.tex,v $

// Revision 1.1 2000/07/24 09:42:46 goetz
// Initial revision

//

//

//

[/Ao ok o ks sk ok o o sk sk ok ok ok sk sk ok ok o sk ok ok ok ok sk sk ok o sk sk o ok ks ok o ok ko ok ok ok sk ok ok o sk sk ok o ek sk ok o o sk ok
#ifndef _OICDEVICE_H

#define _0ICDEVICE_H

class 0ICDevice : public Device {
//
// private members
//
private :
//
// private virtual functions which should be defined in each new sub-class
//
static short class_inited;
long ClassInitialise(long *error);
//
// not many 0IC classes have this method
//
long GetResources (char *res_name, long *error);
//
// public members
//
public:
long State(void *vargin, void *vargout , long *error);
long Status(void *vargin, void *vargout, long *error);
//
// class variables
//
0ICDevice (DevString devname, DevServerClass devclass, long *error);
~“0ICDevice ();
long Command (long cmd,
void *argin, long argin_type,
void *argout, long argout_type,
long *error);
inline short get_state(void) {return(this->ds->devserver.state);}
inline DevServer get_ds(void) {return(this->ds);}
inline DevServerClass get_ds_class(void) {return(this->ds_class);}
//

// protected members - accessible only from derived classes

//

46 CHAPTER 8. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

protected:
long StateMachine(long cmd, long *error);
//
// 0ICDevice member fields
//
DevServer ds; // pointer to the old 0IC object
DevServerClass ds_class; // pointer to the old 0IC class
s
#endif /* _OICDEVICE_H x*/

8.7.2 startup.cpp - an example

Here is an example of a simple C++ startup function which creates a OIC AGPow-
erSupply object in C++ using the OICDevice wrapper class (note the syntax for
the full C++ case commented out) :

static char RcsId[] = "$Header: /segfs/taco/doc/manual/cppdserver.tex,v 1.1 2000/07/24 09:
[/KR ok ko o ok ok sk o ok o ko ok o sk o ko o o sk ko ok ok o ko ok o ok sk ok sk o ko k ok ok sk o sk o ko ok o sk o ko K ok ok ok o
//

// File: startup.cpp

//

// Project: Device Servers in C++

//

// Description: startup source code file for testing the 0IC AGPowerSupply class
// in C++. AGPowerSupply class implements a simulated powersupply

// derived from the base classes PowerSupply and Device (root

// class).

//

//

// Author(s): Andy Goetz

//

// Original: November 1997

//

// $Revision: 1.1 §

//

// $Date: 2000/07/24 09:42:46 $

//

// $Author: goetz $

//

// $Log: cppdserver.tex,v $

// Revision 1.1 2000/07/24 09:42:46 goetz

// Initial revision

//

//

/) /3K sk sk sk s ok sk sk e ok sk sk ok sk sk ks sk sk sk ok ok sk e ok ok sk e ok sk sk s sk ok sk s o sk sk e sk ok ok s ok sk ok 3 ok ok ok o ok ko o ok ok k k ok ok
#include <iostream.h>

#include <API.h>
#include <Device.H>
#include <DevServer.h>
#include <DevServerP.h>
#include <0ICDevice.H>
#include <PowerSupply.h>

8.7. OICDEVICE WRAPPER CLASS 47

#include <PowerSupplyP.h>
#include <AGPowerSupply.h>
#include <AGPowerSupplyP.h>

#define MAX_DEVICES 1000

long startup(char *svr_name, long *error)

{

//
//
//

//
//
//

//
//
//
//
//
//
//
//

//
//
//

//
//
//

char *xdev_list;

unsigned int n_devices, ij;
0ICDevice *device[MAX_DEVICES];
short state;

long status;

printf ("startup++() program to test dserver++ (server name = ¥s)\n",svr_name);
get the list of device name to be served from the static database

if (db_getdevlist(svr_name,&dev_list,&n_devices,error))

{

printf ("startup(): db_getdevlist() failed, error %d\n", *error);
return(-1);

}
printf("following devices found in static database: \n\n");
for (i=0;i<n_devices;i++)
{
printf ("\t%s\n",dev_list[i]);
}

now loop round creating and exporting the devices

for (i=0; i<n_devices; i++)

{
DO NOT create AGPowerSupply (C++) objects

device[i] = new AGPowerSupply(dev_list[i],error);

create old (0IC) AGPowerSupply objects

device[i] = new 0ICDevice(dev_list[i], (DevServerClass)aGPowerSupplyClass,error);
test calling Device::State via Device::Command method

device[i]->Command (DevState, NULL, D_VOID_TYPE, (voidx)&state, D_SHORT_TYPE, error);
export the device onto the network

status = dev_export((char*)device[i]->name, (Devicex*)devicel[il, (long*)error);

printf ("startup++() dev_export() returned %d (error = %d)\n",status,*error);

}

48 CHAPTER 8. DEVICE SERVERS IN C++ BY A.GOTZ AND E.TAUREL

return(DS_0K) ;

8.8 Implementation

In designing the present implementation the following requirements were considered

1. to conserve as much as possible the investment made in the device server api
and the existing classes,

2. to be compatible with any further developments made in the api,
3. clients should not have to be modified.

Based on these requirements it was decided to implement only the device classes in
C++ and keep the api in C thereby satisfying all three requirements. It means that
there is only one api implementation and it can be continued to be developed and
the improvements/bug fixes will be visible to device servers written in C and C++
and to clients.

To implement device servers in C++ the following modifications were made:

1. the svc_api.c file (which implements the rpc stubs for the api functions)
was modified so that (1) when compiled with the C compiler it uses the
OIC DevMethodCommandHandler and (2) when compiled with C++ it calls the
Device: :Command method. Here is an example taken from the dev_putget ()
function :

#ifndef cplusplus

/*
* 0IC version
*/
client_data.status = (ds__method_finder (ds, DevMethodCommandHandler))
(dS,
server_data->cmd,
server_data->argin,
server_data->argin_type,
client_data.argout,
client_data.argout_type,
&client_data.error);
#else
/*
* C++ version
*/
client_data.status = device->Command(server_data->cmd,
(void*)server_data->argin,
server_data->argin_type,
(void*)client_data.argout,
client_data.argout_type,
&client_data.error) ;
#endif /* __cplusplus */

2. svc_api.c was also modified so that it can deal with Devices and not DevServers
anymore. In OIC a list of DevServer has to be managed, while in C++ a list
of Device has to be managed i.e.

8.9. COMPILERS 49

#ifndef cplusplus

DevServer ds;

ds = (DevServer) ptr_ds;
#else

Device *device;

device = (Devicex) ptr_ds;
#endif /x __cplusplus */

3. All include files had to be modified to declare external functions as C functions
for the C++ compiler e.g.

extern "C" long dev_export PT_((char* dev_name, Device *ptr_dev, long *error))

8.9 Compilers

The first C++ implementation was done in 1995 (by AG) using the HP CC compiler
on the HP 9000/700 series. This compiler is a 2.x C++ compiler and supports
symbolic debugging. When compiling the following symbols have to be defined
_STDC__, unix, and _HPUX_SOURCE.

In 1996 this work was repeated (by ET) for the Kicker Powersupply at the ESRF
using the Ultra-C++ compiler from Microware and the GNU g++ compiler on
HP-UX.

For the future we propose that wherever possible the GNU g++ compiler must be
used. Where it is not possible the best adapted native compiler should be used.
This is clearly the case for OS9 where the native Ultra-C++ compiler from Mi-
croware is the obvious choice. This is not so clear for HP-UX - the GNU g++ com-
piler does not support exceptions but is otherwise a good choice. For the present
g++ is supported under HPUX (i.e. the C++ libraries are compiled only with the
g++ compiler?).

8.10 Template Class

In the absence of xclassgen supporting C++ we have written templates for a
Template class. The templates were derived from the KickerSupply class but
have never been compiled (i.e. we do not guarantee there are no bugs !). To use
the templates simply copy them and modify them with a global editor replacing all
occurrences of Template and template with MyNewClassName and mynewclassname
(the name of your new class).

The templates can be found in libra:/users/d/dserver/classes++/template :

1. include/Template.H - template include file
2. src/Template.cpp - template source file
3. src/startup.cpp - template startup file

4. src/Makefile - template Makefile for HPUX and Ultra C++

2note that because the GNU compiler uses a different algorithm for “name mangling” it is not
possible to mix GNU object files with those compiled with a different compiler

50 CHAPTER 8. DEVICE SERVERS IN c++ BY A.GOTZ AND E.TAUREL

8.11 C++ Programming Style

The following style conventions have been adopted :

e the suffixes .H and .cpp were used for C++ include files and source files re-
spectively.

e the C++ commenting style which uses // at the beginning of each line has been
used in order to distinguish it from the pure C style of /* bla bla */.

e extensive use of the this pointer has been made to make the code as explicit
and readable as possible.

e 1o use has been made of ref types.

8.12 Advantages of C++

The following are some of the advantages of using C++ for writing device servers as
opposed to OIC :

1. C++ is a real language with compiler support and symbolic debuggers,

2. C++ is well documented and has a large selection of literature (see the section
on Suggested Reading),

3. because of the compiler support for C++ it is easier to program new classes, the
programmer does not have to learn the many big and small letter conventions
of OIC,

4. a new class can have more than one base class (polymorphism),

5. C++ is more compatible with new products for which only C++ bindings exist
e.g. Corba, DOOCS and cdev.

8.13 Disadvantages of C++

There are not many disadvantages of using C++ but here are some of them :
1. C++ with all its many concepts and possibilities has a steep learning curve,

2. extensive use of operator overloading, function overloading and virtual
functions can very quickly make C++ totally unreadable,

3. C++ executables are big (2 500 kilobytes on HP-UX) compared to OIC exe-
cutables (~ 150 kilobytes on HP-UX).

8.14 Future developments

Some of the future directions to be considered are :

1. ports to other platforms e.g. Solaris, Linux, LynxOS, vxWorks, will be un-
dertaken,

2. the class generator tool will be extended so that it can generate C++,

3. more use of inline functions should be made,

8.15. CONCLUSION 51
4. define and implement C++ bindings for the database API and the device server
APT (DOOCS or cdev?).

5. if templates and exception handling become standard on all compilers
then investigate how they can be best used,

8.15 Conclusion

OIC has served a useful purpose but the time has come to move to a real object
oriented language and C++ seems to be the obvious choice. The present imple-
mentation shows that it is possible to implement Device Servers in C++ and still be
backwards and forwards compatible with the device server api and the existing OIC
classes.

8.16 Suggested Reading

A lot of literature exists on C++ (books, journals, conferences proceedings etc.) here
is a short list of titles which can be recommended :

1. C++ Primer by Stanley B. Lippman,
2. The C++ Programming Language by Bjarne Stroustrup,

3. The Annotated C++ Reference Manual by Margaret Ellis and Bjarne Strous-
trup (ANSI Base Document),

4. Effective C++: 50 Specific Ways to Improve Your Programs and Designs by
Scott Meyers,

5. More Effective C++: 35 New Ways to Improve Your Programs and Designs
by Scott Meyers,

52 CHAPTER 8. DEVICE SERVERS IN c++ BY A.GOTZ AND E.TAUREL

Chapter 9

DSAPI
by J.Meyer and A.Gotz

9.1 Introduction

The DSAPT is the TACO Device Server Application Programmer’s Interface for C
and C++ programs. It is used by clients and servers to import, execute commands
on, free and explore TACO devices. It uses the ONC-RPC (SUN remote procedure
call) as underlying communication protocol. This document describes the latest
version of the DSAPI V6.0.

This document is split into the following sections : “Getting Started” describes how
to write a simple client which uses DSAPI, should be read by beginner’s who want
to get a quick start; “C library” is a reference guide to all DSAPI functions for
clients and servers; “XDR Types” describes the XDR types supported by DSAPI;
“Changes” describes what are the main changes in the different major releases;
“Platforms Supported” lists the different platforms and compilers supported; “In-
terfaces to other Languages” contains a summary of DSAPI interfaces in other lan-
guages. Beginners should read “Getting Started” first, other programmers should
read what changes have taken place in the latest version and use the reference guide.

9.2 What is DSAPI ?

DSAPI is a C (and C++) programmer’s interface for accessing device in a TACO
control system.

Devices in a TACO control system are network objects created and served by pro-
cesses called device servers. A device is identified by its ASCII name :

[//facility/]domain/family/member

Each device understands a set of commands. The commands enable a remote client
to execute actions on a device e.g. for a powersupply switch it on or off, read the
state, read the current.

The DSAPIT gives remote and local clients access to device commands.

Using DSAPI it is possible to execute any command on any device (assuming the
client has the necessary permission) in a TACO control system. Data is passed from
the client to the device via the input and output parameters of the DSAPI.
Devices are organised into classes. Each class implements and understands a fixed
set of commands. The list of commands for a device class is documented in the
Device Server User’s Guide (DSUG). The set of C functions which implement the
DSAPI are archived in static or shared libraries for all platforms supported.

53

54 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

9.3 Getting Started

This section will take you through the steps of writing a simple application us-
ing DSAPI. Two versions of a simple “Hello World” in C for sending a string to
a “hello world” device will be presented The first version demonstrates using the
DSAPI to execute commands synchronously while the second version demonstrates
asynchronous command execution. The user will be taken through the stages of
compiling, linking, debugging and running. The section will terminate with tips
on common pitfalls encountered by DSAPI beginner’s (and even old-timer’s some-
times).

9.3.1 “Hello World” (synchronous) example

This example will take you through the steps of writing a simple program to send
a “Hello World” string to a device synchronously.

Step 1

The first step is to find out which commands the device understands. If you don’t
know them off by heart then get hold of the user guide (DSUG) for that device
class and read it. The DSUG will list all commands implemented for the device and
their input and output arguments.

The command we will use in this example is DevHello.

Step 2

The next step is to write the program. This assumes we know what we have to
control and how.

In the case of this example we want a program which sends a string to a device and
reads one back.

The program is written in C and uses a simple ascii interface to interact with the
user. The program listing can be found below (cf. section “Code Example”).

ALL device access is done using DSAPI (of course). The main statements to note
are :

e #include <API.h> - include file required by all clients (and servers). Nec-
essary to prototype all DSAPI functions, and to define symbols and types.
APILh will include other include as necessary.

e devserver hs - variable which will contain the device handle. Every device
has to have a device handle. Tt is passed as input parameter to every DSAPI
call. Tt contains all information necessary to communicate with the device
on the network (network address, protocol, security etc.) as well as various
bookkeeping information (device name). The device handle is initialised on
the first successful call to dev_import () (cf. below).

e dev_import() - initialise the device handle. This call takes as input the
device name and permission level requested. It checks the database to see if
the device is defined and if so it asks the database for the device’s network
address. Then it tries to contact the device server. All this information is
stored in the device handle and returned to the user. If the device is not
defined in the database or the user does not have the necessary permission to
use the device dev_import () will return an error and the device handle will
be NULL. The import is stateless this means the routine will not fail if the
device server is not running. The 2nd parameter is used for security (this is
discussed in the C library reference).

9.3. GETTING STARTED 95

e dev_putget () - execute a command on the device. This call is the workhorse
of DSAPI. It is used to execute a command on a device synchronously i.e.
the client sends her request to the device and then waits for the command
to be executed and for the answer to be returned before continuing. For
the asynchronous version see below. The client has to specify the input and
output arguments and their types. This information is normally obtained
from the DSUG but can be constructed dynamically (using dev_cmd_query().
All parameters are passed as pointers. If the output arguments contain any
pointers in them the client can choose to allocate space for the result himself
or let DSAPI allocate space. (by setting the pointer to NULL) In the latter
case it is up to the client to free the space allocated by DSAPI. The question
of when to allocate and when to free is a tricky one and is treated in more
detail in the section “Common Pitfalls”.

e dev_free() - free the device handle. This call will try to inform device server
that the client is not connected to this device anymore. If this is the client’s
last network connection to the device server it will free the socket connection
to the device server. Finally it will free the device handle structure allocated
by dev_import ().

Step 8

The next step is to compile and link the client. This is different depending whether
you are using a Unix-like (HP-UX, Solaris, Linux, VxWorks), OS9 or a Windows-NT
system.

Unix and OS9

To compile under Unix and OS9 you have to tell the compiler where to find the
DSAPI include files and which libraries to link with.

Assuming the your program is called helloworld, $DSHOME is an environment vari-
able which points to the root directory of your TACO installation and $OS the
operating system type (s700 for HP-UX 9.x, hpux10.2 for HP-UX 10.2, solaris
for Solaris, 1inux for Linux, vxworks for VxWorks, os9 for 0S9) then simply type

$CC $CFLAGS -I$DSHOME/include -L$DSHOME/1ib/$0S -ldsapi -ldbapi -ldsxdr
helloworld.c -o helloworld.

$CC and $CFLAGS have to be positioned for each platform (refer to the example
Makefile). Windows-NT

To compile under Visual C++ 4.2 you need to set the following options using the
graphical interface :

to be filled in ...

Step 4

The final step is to run your program. Make sure you are in a shell interpreter
(e.g. bash, ksh, tcsh, csh for Unix and MSDOS for Windows-NT) and simple
type the name of the client program plus the name of the device i.e. helloworld
exp/hello/world. If you forget to provide a device name the program will prompt
you for one.

Example code - helloworld.c

static char RcsId[] = "@(#)$Header: /segfs/dserver/doc/notes/DSN101/RCS/DSN101.tex,v 2.1 199’
/o o o ok o o ok o ok o o o o ok ok ok sk sk sk sk skok sk o ok ok o o o o o ok ok ok ok sk sk sk sk sk sk sk ok o o o o o o ok ok ok ok ok sk sk sk ok sk ok ok ok ok o

File : helloworld.c

96 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

Project : Device Server

Description: A simple test client to test using the synchronous
device server API.

Author(s) : Andy Goetz
Original : November 1997

$Revision: 2.1 $
$Date: 1997/11/13 14:16:40 $

$Author: goetz $

$Log: DSN101.tex,v $
Revision 2.1 1997/11/13 14:16:40 goetz
first release of DSAPI V6

Revision 1.5 1997/11/13 14:13:31 goetz
totally reworked doc; added "Hello World" examples; asynchronous call; xdr types

*—***/

#include <Admin.h>
#include <API.h>

main(argc,argv)
unsigned int argc;
char **argv;

{

devserver hw;
long access = WRITE_ACCESS, error, status;
char *ch_ptr,helloworld[256], dev_name[256];

switch (argc) {
case 1:
printf("enter device name [\"exp/hello/world\"1?7 ");
if (NULL==gets (dev_name) || ’\0’==dev_name[0])
strcpy(dev_name, "exp/hello/world");

break;
case 2:
strcpy(dev_name,argv[1]);
break;
default:
printf("usage: helloworld [device name]\n");
exit(1);
}

status = dev_import(dev_name,access,&hw,&error);
printf ("dev_import(%s) returned %d\n",dev_name,status);

9.3. GETTING STARTED 57

if (status !'= 0)

{
printf ("%s",dev_error_str(error));
exit(1);

}

sprintf (helloworld, "Hello World");
ch_ptr = NULL;

status = dev_putget(hw,DevHello,
&helloworld,D_STRING_TYPE,
gch_ptr,D_STRING_TYPE,
&error) ;

printf ("\nDevHello dev_putget() returned %d\n",status);

if (status == 0)

{
printf("device answered : %s\n",ch_ptr);
dev_xdrfree(D_STRING_TYPE, &ch_ptr, &error);
}
else
{
dev_printerror_no (SEND,NULL,error) ;
}

dev_free(hw,&error) ;
exit (0);

9.3.2 “Hello World” (asynchronous) example

This example is a repeat of the above but using the asynchronous version of DSAPI.
Asynchronism in this case means the client requests a command to be executed but
does not wait for the server to respond. Instead it continues on to the next statement
immediately. The request is put into the server’s buffer of incoming requests. After
the server has executed the command it returns an acknowledge plus any output
arguments to the client asynchronously. The reply is buffered in the clients queue
of incoming replies. When the client is ready it polls its input queue to see if there
are any replies pending (using the dev_synch() call).

Asynchronous command execution is more difficult to program than synchronous.
However it is more efficient and is particularly useful for windowing programs and
for programs which want to start multiple commands on multiple devices executing
simultaneously and don’t want to wait for the command to finish execution.

This example is identical to the above example excepting for the fact that DevHello
command is executed asynchronously. A callback function specified. This makes
the code longer and more slightly more complicated to read.

Step 1

Understanding the device - same as Step 1 above.

98 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

Step 2

Writing the program - in principal same as Step 2 above however this time round
use the asynchronous version of DSAPI.
The new calls are :

e callbacks - functions to be called when client receives a reply. Every reply
received by the client has to be signalled to the client and unpacked. The
callback functions serve this purpose. One callbacks functions has been im-
plemented for this example - hello_callback(). The client can pass its own
data with every asynchronous call which can be used to identify each reply
during the callback (user_data parameter).

e dev_putget_asyn() - execute a command asynchronously on a device. As
explained above the client does not wait for the server to accept the request
for the reply. The input arguments are the same as for dev_putget () (syn-
chronous) plus three additional arguments. The additional arguments specify
the callback function (to be triggered during a call to dev_synch()), a pointer
to user data and an asynchronous id (returned by dev_putget_asyn().

e dev_synch() - check to see if any asynchronous replies have been received. If
so they are unpacked and the corresponding callback is triggered. dev_synch()
takes as input the amount of time it should wait for pending replies before
continuing.

Step 3

Compiling and linking - same as Step 3 above for Unix and OS9. The asynchronous
calls are part of the standard library.
Not support under Windows-NT (yet).

Step 4
Running - same as Step 4 above for Unix and OS9.
Not supported under Windows-NT (yet).

Example code - helloworld asyn.c

static char RcsId[] = "@(#)$Header: /segfs/dserver/doc/notes/DSN101/RCS/DSN101.tex,v 2.1 1
[etk ks ke ks ke sk ko sk ke ko sk o ok ko ko sk sk o ks ok sk sk ok ek ok sk ks ko sk o sk ko sk ok o sk ok

File : helloworld_asyn.c
Project : Asynchronous Device Server’s
Description: A simple test client to test using the asynchronous

device server API using callbacks.
Author(s) : Andy Goetz
Original : January 1997

$Revision: 2.1 $
$Date: 1997/11/13 14:16:40 $

$Author: goetz $

9.3. GETTING STARTED 59

$Log: DSN101l.tex,v $
Revision 2.1 1997/11/13 14:16:40 goetz
first release of DSAPI V6

Revision 1.5 1997/11/13 14:13:31 goetz

totally reworked doc; added "Hello World" examples; asynchronous call; xdr types

*—***/

#include <API.h>
#include <DevStates.h>

/Koo ok ok ks sk sk ok o o sk sk ok ok ok sk sk ok ok o sk ok ok ok ok sk sk ok o sk sk o ks ok o ko ok ok ek sk ok ok o sk sk ok o ks ok o o sk ok
Function : void hello_callback()

Description: callback function to be called asynchronously after executing
the DevHello commands

***—*/

void hello_callback(ds, user_data, cb_data)
devserver ds;

void *user_data;

DevCallbackData cb_data;

{
long error;
printf ("hello_callback(s): called with asynch_id=%d, status=/d (error=%d) user data
ds->device_name,cb_data.asynch_id, cb_data.status, cb_data.error, (char*)user_data);
printf("hello_callback(s): time executed by server = {Jd s,%d us}\n",
ds->device_name,cb_data.time.tv_sec,cb_data.time.tv_usec);
if (cb_data.status == DS_0K)
{
printf ("hello_callback(%s): device answered=)s\n",
ds->device_name, * (DevString#*)cb_data.argout) ;
dev_xdrfree (D_STRING_TYPE, &cb_data.argout, &error);
}
else
{
dev_printerror_no (SEND,NULL,cb_data.error) ;
}
return;
}
/) ket ok ks ok ko ks e sk o ko ek o sk o ke o o sk ko ks sk sk ko ok sk sk o ke ko ok sk e sk e ko ek o sk o ko o sk ok o
Function : main()
Description: main function to test asynchronous DSAPI.

***—*/

60

CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

main(argc,argv)
unsigned int argc;
char **argv;

{

/%

devserver hw;

long access = WRITE_ACCESS, error, status;
char ch_ptr, helloworld[256], dev_name[256];
struct timeval timeout_25s = {25,0};

long asynch_id;

char *user_data="my data";

switch (argc) {
case 1:
printf("enter device name [\"exp/hello/world\"1?7 ");
if (NULL==gets (dev_name) || ’\0’==dev_name[0])
strcpy(dev_name, "exp/hello/world") ;

break;

case 2:
strcpy(dev_name,argv[1]);
break;

default:

printf("usage: helloworld_asyn [device name]\n");
exit(1);
}

imported = dev_import(dev_name,access,&hw,&error) ;
printf ("dev_import(%s) returned %d\n",dev_name,imported);

if (imported != 0)

{
printf ("%s",dev_error_str(error));
exit(1);

}

sprintf (helloworld, "Hello World");
ch_ptr = NULL;

status = dev_putget_asyn(hw,DevHello,
&helloworld,D_STRING_TYPE,
gch_ptr,D_STRING_TYPE,
(DevCallbackFunction*)void_callback,
(void*)user_data, &asynch_id,
&error) ;
printf ("\nDevHello dev_putget_asynch()d) returned %d\n",asynch_id, status);
if (status < 0) dev_printerror_no(SEND,NULL,error);

* wait for answer from client (waits for a max of 25 s)

9.3. GETTING STARTED 61

*/
status = dev_synch(&timeout_25s, &error);
dev_free(hw,&error) ;
exit (0);

}

9.3.3 Common Pitfalls

Using an API is easy once you know how. For beginner’s this is not the case. This
section will list the common pitfalls encountered by beginner’s (and old-timers too!)
when they start using DSAPL

9.3.4 Nethost

Every TACO control system is managed by a NETHOST. The NETHOST is the
name of the host where the TACO Manager has been started. It is referred to as
the facility in the device name. The Manager is the entry point for all TACO
clients and servers.

A common error when starting an application (e.g. helloworld) is to forget to
specify the NETHOST environment variable.

In this case you will get an error similar to this :

Thu Nov 6 13:56:42 1997 environmental variable NETHOST not defined

The solution is to set the environment variable to the name of a host where a
TACO control system Manager is running e.g. “setenv NETHOST libra” for csh
or “export NETHOST=libra” for ksh or bash.

An alternative to specifying the NETHOST environment variable is to qualify
the device name with the facility field which is the same as the NETHOST e.g.
//libra/exp/hello/world.

If the Manager is not running you will get the following error :

Thu Nov 6 14:03:26 1997 no network manager available

If you don’t know which host is your NETHOST then ask your TCO system ad-
ministrator/guru. If you are supposed to be the guru then start the Manager. If
you don’t know how then send an email to the TACO help-line taco@esrf. fr

9.3.5 Shared Libraries

Another common error is not finding the DSAPI shared libraries.
If your application dies with the following message :

./helloworld: can’t load library ’libdsapi.so’

You must add the DSAPI library directory for your platform to the shared library
path searched by your system.

For Solaris and Linux use :

set $LD_LIBRARY_PATH:$DSHOME/1ib/$0S for csh and tcsh,

export $LD_LIBRARY PATH=$LD_LIBRARY PATH:$DSHOME/1ib/$0S for ksh and bash.
For HP-UX use :

set $SHLIB_PATH:$DSHOME/1ib/$0S for csh and tcsh,

export $SHLIB PATH=$SHLIB PATH:$DSHOME/1ib/$0S for ksh and bash.

62 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

Where $DSHOME is and environment variable pointing to the TACO home direc-
tory and $0OS the operating system flavour.

Shared libraries are not supported on OS89 and Windows/NT (yet).

9.3.6 Makefiles

Although the compile+link instructions listed above can be typed every time you
want to recompile+relink it is much more efficient to write a makefile with the
necessary instructions.

The TACO makefiles are multi-platform and make use of the conditional statements
supported by GNU make (also known as gmake). gmake supports statements of
the kind ifdef $(symbol), else and endif. Most TACO conditional makefiles
use the same symbols. These are :

e _hp9000s700 - for HPPA 1.0 systems running HP-UX 9.x

e _hpux10 - for HPPA 1.0 systems running HP-UX 10.2

e _solaris - for Solaris

e linux - for Linux

e vw68k - for Motorola 68k systems running VxWorks

e vwx86 - for Intel x86 systems running VxWorks

e _UCC - for OS9 systems using the Ultra C and C++ compiler
e unix - for HP-UX, Solaris, Linux and VxWorks platforms

A simple example Makefile for the helloworld program could look like this :

#

#

Makefile for helloworld - a simple DSAPI client
#

#

TACO home directory

#

DSHOME = $(LOCAL_DSHOME)

#

library home directory - platform dependant
#

ifdef __hpux10

LIBHOME = $(DSHOME)/1ib/hpux10.2
endif # __hpux10

ifdef _solaris

LIBHOME = $(DSHOME)/lib/solaris
endif # _solaris

ifdef linux

LIBHOME = $(DSHOME)/1ib/linux
endif # linux

ifdef _UCC
LIBHOME = $(DSHOME)/lib/os9
endif # _UCC

ifdef vw68k
LIBHOME = $(DSHOME)/1ib/vw68k

9.3. GETTING STARTED 63

endif # vw68k
ifdef vwx86
LIBHOME = $(DSHOME)/1lib/vwx86
endif # vwx86
#
include files home directory
#
INCLDIRS = -I$(DSHOME)/include \
-I$(DSHOME) /include/private
#
compiler flags - platform dependant
#
ifdef __hpux10
CC = /bin/cc
CFLAGS = -Aa -g -DEBUG -Dunix -D_HPUX_SOURCE -D__hpux10 -DBSD=199704 \
-c $(INCLDIRS)
endif # __hpux10
ifdef _solaris
CC = /opt/SUNWspro/SC4.0/bin/cc
CFLAGS = -Xa -g -Dsolaris -DEBUG -c $(INCLDIRS)
endif # _solaris
ifdef linux
CC = gcc
CFLAGS = $(INCLDIRS) -Dlinux -Dunix -ansi -DEBUG -g -c
endif # linux
ifdef _UCC
CC = xcc
CFLAGS = -mode=c89 -g -D EBUG -to osk -tp 020 -x il -e as=. $(INCLDIRS)
endif # _UCC
ifdef vw68k
CC = cc68k
CFLAGS = -Dvxworks -Dunix -DCPU=MC68020 -ansi -m68030 \
-msoft-float -DEBUG -e $(INCLDIRS) -g
endif # vw68k
ifdef vwx86
CC = cc386
CFLAGS = -v -c -Dvxworks -Dunix -DCPU=I80386 -ansi \
-DEBUG $(INCLDIRS) -g
endif # vwx86
#
library flags
#
ifdef __hpux10
LFLAGS = -L$(LIBHOME) -ldsapi -ldsxdr -ldbapi -1m
endif # __hpux10
ifdef _solaris
LFLAGS = -L$(LIBHOME) -ldsapi -ldsxdr -ldbapi -1lnsl -lsocket -1m
endif # _solaris
ifdef linux
LFLAGS = -L$(LIBHOME) -ldsapi -ldsxdr -ldbapi -1m
endif # linux
ifdef _UCC
LFLAGS = -L$(LIBHOME) -1 dsapi -1 dsxdr -1 dbapi -1 rpclib -1 netdb_small \
-1 socklib.1l -1 sys_clib.1l -1 unix.1

64 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

endif # _UCC

all : helloworld

helloworld : helloworld.c
$(CC) $(CFLAGS) helloworld.c -o helloworld $(LFLAGS)

NOTE: don’t forget to start all rules with a tabulation mark !

Although even this simple example looks complicated keeping all platform depen-
dancies in one file can prove to be a time saver when developing on multiple plat-
forms.

9.3.7 Memory Allocation

Probably the trickiest part for beginners to DSAPI is memory allocation. DSAPI
uses the memory allocation of the XDR library of the ONC-RPC. The difficulties
come from the fact that all procedure calls are to remote servers and pointers to
memory areas have to be copied to the (remote) server and vice versa.

The rules for memory allocation in DSAPI can be summarised as follows :

1. arguments are either outgoing (input) or incoming (output) from the client
to the server,

2. all input and output arguments are passed via pointers,
3. memory for input arguments have to allocated by the client (of course !),

4. memory for pointers in output arguments can be allocated either by the client
or by the DSAPI (actually the XDR layer),

5. if memory in output arguments is to be allocated by DSAPI then initialise
pointers in output arguments to NULL,

6. if pointers to memory in output arguments are NOT initialised to NULL
DSAPT assumes the client has allocated the necessary memory and will try to
use it (with catastrophic consequences if this is not the case !),

7. any memory allocated by DSAPI has to be freed by the client using dev_xdrfree().

8. in order to avoid nasty bugs or strange core dumps therefore clients MUST
initialise all incoming pointers to NULL or to locally allocated memory.

If you understand the above rules and follow them you should not have any prob-
lems. The problems come from not understanding and following these rules. The
XDR types supported by DSAPT are covered in the section on “XDR Types”.

To illustrate the above rules here are some examples :

e simple C types
devserver ps;

long status, error;
float readvalue;

status = dev_putget(ps, DevReadCurrent, NULL, D_VOID_TYPE,

9.3. GETTING STARTED 65

&readvalue, D_FLOAT_TYPE, &error);
printf ("current %6.3f\n",readvalue);

This is a simple example of using a simple C type to receive output from the
server. Simply pass the pointer to the simple type to DSAPI.

NOTE : DSAPI cannot allocated memory for simple types because it expects a
pointer to a value and not a pointer to a pointer to a value and it therefore has
no way of distinguishing between a pointer to the value ZERO and a pointer
to NULL (if you know what I mean ...)

e output arguments - memory allocated by client

devserver ps;

long status, error, i;

float readvalues[MAX_READVALUES];
DevFloatVarArray float_vararr;

float_vararr.length = MAX_READVALUES;
float_vararr.sequence = readvalues;
status = dev_putget(ps, DevReadAll, NULL, D_VOID_TYPE,
&float_vararr, D_VAR_FLOATARR, &error);
printf("read %d value\n\n",float_vararr.sequence) ;
for (i=0; i<float_vararr.sequence; i++)
{
printf (" current[%d] %6.3f\n", i, readvalues[i]);
}

In this example the client receives a variable length array of floats. The client
has allocated memory for the array of floats itself. It is the responsibility of
the client to ensure that sufficient memory is allocated for the return argments
and that the server does not send more values than the client expects.

¢ output arguments - memory allocated by DSAPI

devserver ps;
long status, error, i;
DevFloatVarArray float_vararr;

float_vararr.length = 0;

float_vararr.sequence = NULL;

status = dev_putget(ps, DevReadAll, NULL, D_VOID_TYPE,
&float_vararr, D_VAR_FLOATARR, &error);

printf("read %d value\n\n",float_vararr.sequence) ;

for (i=0; i<float_vararr.sequence; i++)

66 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

{

printf (" current[%d] %6.3f\n", i, float_vararr.sequencel[i]);
}
dev_xdrfree(D_VAR_FLOATARR, &float_vararr, &error);

In this example the client sets the sequence to NULL and lets DSAPI allo-
cate memory for the output arguments. The client has to free the allocated
memory.

9.3.8 Advanced Features

Before leaving the “Getting Started” section we would like to mention some advanced
features of the DSAPI which are very useful.

9.3.9 Timeouts

The DSAPI is managed by timeouts. Both synchronous and asynchronous calls
have a timeout. A client will receive a timeout error (DevErr RPCTimedOut) if the
server has not sent an answer within the timeout period.

The default timeout for synchronous calls is 3 seconds. The default timeout for
asynchronous calls is 25 seconds.

The client can modify the timeout per device using the dev_rpctimeout () call (cf.
the C library reference). This can be necessary if the request is know to take longer
than the default timeout to execute.

If a client gets lots of timeouts there could be a network problem i.e. lots of network
traffic. This can fixed by simply changing from UDP to TCP protocol (see next
section).

9.3.10 Protocol

The DSAPI is based on the ONC-RPC and makes use of UDP and TCP (the two
main IP protocols). The difference between the two protocols is :

e UDP is a connectionless unreliable protocol. UDP has the advantage that it
does not require a dedicated file descriptor per client-server connection and it
is (sometimes) faster than TCP. It has the disadvantage that it does not retry
if a request fails and it is limited in maximum packet size to 8 kilobytes. All
device imports are done using UDP. UDP is the default protocol

e TCP is a connection-oriented reliable protocol. It has the advantage that it is
reliable i.e. it will retry if a request fails to be acknowledge, and can transfer
unlimited packet sizes (in reality limited by the receiving computer to a few
megabytes). It has the disadvantage that it requires a file descriptor per
client-server connection and it is a more complicated protocol to implement.

To change from UDP to TCP or vice-versa use the dev_rpc_protocol() call (cf.
below).

9.4. C LIBRARY 67

9.4 C Library

Below you will find all the DSAPI calls in the C library in alphabetical order.

9.4.1 Synchronous Client API

These calls are used by DSAPI clients to send a synchronous request to a device
server. The notion of client-server refers to sender and receiver of each DSAPI call.
This means a device server itself can become a DSAPI client if it accesses a device.

dev_cmd_query()

typedef struct {
u_int length;
DevCmdInfo *sequence;
} DevVarCmdArray;

typedef struct {

long cmd; /* command */

char cmd_name [20]; /* command name as ASCII string */
char xin_name; /* description of input arguments */
long in_type; /* type of input arguments */

char *out_name; /* description of output arguments */
long out_type; /* type of output arguments */

} DevCmdInfo;

long dev_cmd_query (ds, varcmdarr, error)

devserver ds; /* client handle */
DevVarCmdArray *varcmdarr; /* results of query */
long *xerror; /* error */

Dev_cmd_query() returns a sequence of DevCmdInfo structures containing all avail-
able commands, their names, their input and output data types, and type descrip-
tions for one device. Commands and data types are read from the command list in
the device server. Command names are read from the CMDS table of the resource
data base. Data type descriptions for input and output arguments for a command
function have to be specified in the resource database in the CLASS table as:

CLASS/class_name/cmd_name/IN_TYPE: "Current in mA"
CLASS/class_name/cmd_name/0UT_TYPE: "Power in MW"

class_name : Name of the device class. Retrieved from
the device server.

cmd_name : Name of the command. Retrieved from the
CMDS table in the resource data base.

dev_free()

long dev_free (ds,error)
devserver ds; /* client handle */
long *error; /* error */

Dev_free() closes the connection to a device associated with the passed client handle.

68 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

dev_import()

long dev_import (dev_name,access,ds_ptr,error)

DevString dev_name; /* device name */

long access; /* requested access level */

devserver *ds_ptr; /* returned pointer to the client
handle */

long *error; /* error */

Opens a connection to a device and returns a client handle for the connection.
Dev_import can distinguish between local and remote devices.

If the control system is running with security on then the access parameter deter-
mines what level of access permission the client wants on the device. The following
levels are supported :

1. READ_ACCESS for read-only access

2. WRITE_ACCESS for read and write access (default)
3. SI_WRITE_ACESS for single user write access

4. SU_ACCESS for super-user access

5. SI_SU_ACCESS for single user super-user access

6. ADMIN_ACCESS for administrator access

The default access is WRITE_ACCESS and correpsonds to access=0. If the TACO con-
trol system is running with security the client has to have the necessary permission
in the security database for the (UID,GID,HOST,NETWORK) quadrupole.

For more information on security refer to “Access Control and Security for the ESRF
Control System” by J.Meyer (DSN/102).

dev_inform/()

typedef struct {
char device_name[80];
char device_class[32];
char device_type[32];
char server_name[80];
char server_host[32];
} DeviInfo;

long dev_inform (clnt_handles, num_devices, dev_info, error)

devserver *clnt_handles; /* list of client handles */
long num_devices; /* number of client handles */
DevInfo *xdev_info; /* returned list of

information structures */

long xerror; /* error */

Dev_Inform() returns to the user a structure containing device information for every
specified device client handle. The information structure contains:

e the name of the device,
e the class name,

e the device type,

9.4. C LIBRARY 69

e the device server name,

e the host name of the device server

The returned information structures are allocated by dev_inform() with malloc(3C).
The can be freed by using free(3C).

dev_put()

long dev_put (ds,cmd,argin,argin_type,error)
devserver ds; /* client handle */
long cmd ; /* command */
DevArgument argin; /* pointer to input arguments */
DevType argin_type; /* type of input arguments */
long *error; /* error */

Dev_put() executes a command on the device associated with the passed client
handle, without returning any output data. The device might be remote or local.
Input data types must correspond to the types specified for this command in the
device server’s command list. Otherwise an error code will be returned. The output
data type in the device server’s command list must be set to D_VOID_TYPE. All
arguments have to be passed as pointers.

dev_put_asyn()

long dev_put_asyn (ds,cmd,argin,argin_type,error)

devserver ds; /* client handle */

long cmd ; /* command */

DevArgument argin; /* pointer to input arguments */
DevType argin_type; /* type of input arguments */
long Xxerror; /* error */

The function dev_put-asyn() is similar to dev_put(). The only difference is, that
dev_put_asyn() sends a request to execute a command to a device server and re-
turns immediately when the command was received. The only errors which can
be returned by dev_put_asyn() are errors during the sending of the command. A
correct return status only indicates that the command execution was started.

No failures during command execution can be reported back to the client.

dev_putget()

long dev_putget (ds,cmd,argin,argin_type,argout,argout_type,error)

devserver ds; /* client handle */

long cmd ; /* command */

DevArgument argin; /* pointer to input arguments */
DevType argin_type; /* type of input arguments */
DevArgument argout; /* pointer to output arguments */
DevType argout_type; /* type of output arguments */
long *error; /* error */

Dev_putget() executes a command synchronously on the device associated with the
passed client handle. The device might be remote or local. Input and output data
types must correspond to the types specified for this command in the device server’s
command list. Otherwise an error code will be returned. All arguments have to be
passed as pointers.

Memory for outgoing arguments will be automatically allocated by XDR, if pointers
are initialised to NULL. To free the memory allocated by XDR afterwards, the
function dev_xdrfree() must be used.

70 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

dev_putget_raw()

typedef struct {
u_int length;
char *sequence;
} DevOpaque;

long dev_putget_raw (ds,cmd,argin,argin_type,argout,argout_type,error)

devserver ds; /* client handle */

long cmd ; /* command */

DevArgument argin; /* pointer to input arguments */

DevType argin_type; /* type of input arguments */

DevOpaque *argout; /* pointer to opaque data */

DevType argout_type; /* type of output arguments,
returned by the command */

long Xxerror; /* error */

Dev_putget_raw() executes a command on the device associated with the passed
client handle and returns the outgoing arguments as a block of opaque data in
XDR format. All arguments have to be passed as pointers. Memory for the
opaque block will be allocated by the RPC if the sequence pointer is initialised
to NULL. The allocated memory can be freed with dev_xdrfree() and the type
identifier D_.OPAQUE_TYPE.

dev_rpc_protocol()

long dev_rpc_protocol (ds, protocol, error)

devserver ds; /* client handle */
int protocol; /* transport protocol */
long *error; /* error */

By calling dev_rpc_protocol() with one of the two defined protocol parameters
D_UDP and D_TCP (APLh), the transport protocol for an open RPC connec-
tion will be set to the chosen protocol. Before switching the protocol, an RPC
connection to a device server has to be opened by a dev_import() call.

All devices implemented in the same server and imported by the client use the same
RPC connection. Changing the protocol of a RPC connection with dev_rpc_protocol
means changing the protocol for all devices of the same server.

e D_.UDP
UDP protocol with maximal 8kbyte data transfer.

e D_TCP
TCP protocol. TCP point to point connection with no transfer limitations.
dev_rpc_timeout()

long dev_rpc_timeout (ds, request, dev_timeout, error)

devserver ds; /* client handle */

int request; /* CLSET_TIMEOUT or CLGET_TIMEOUT */
struct timeval *dev_timeout; /* timeout value */

long *xerror; /* error */

Sets or reads the timeout for a RPC connection with UDP protocol. A request
to set the timeout has to be asked with CLSET_TIMEOUT as request parameter
and the timeout specified by the timeval structure dev_timeout. The timeout will

9.4. C LIBRARY 71

be set without any retry. A request to read the timeout has to be asked with
CLGET_TIMEOUT, and the current timeout will be returned in dev_timeout.

All devices implemented in the same server and imported by the client use the same
RPC connection. Changing the timeout of a RPC connection with dev_rpc_timeout
means changing the timeout value for all devices of the same server.

dev_xdrfree()

long dev_xdrfree (type, objptr, error)

DevType type; /* type of arguments */
DevArgument objptr; /* pointer to arguments */
long *xerror; /* error */

Dev_xdrfree frees the memory for device server data allocated by XDR. An example
for the use of dev_xdrfree() is the freeing of a D_-VAR_FLOATARR data type. Using
dev xdrfree() you don’t have to care about the length of the internal sequence of float
values. Just pass a pointer to a D_-VAR_FLOATARR structure and the allocated
memory for the sequence will be freed, according to the length specified in the
structure.

9.4.2 ASynchronous Client API

These calls are used by DSAPI clients to send and receive asynchronous requests
to a device server. The notion of client-server refers to sender and receiver of each
DSAPI call. This means a device server itself can become a DSAPI client if it
accesses a device.

dev_asynch_timeout

long dev_asynch_timeout (devserver ds, long request,
struct timeval *tout, long *error)

Call to set/get the timeout for an asynchronous call to the device ds. Get/Set oper-
ation is determined by request = CLSET_TIMEOUT or CLGET_TIMEOUT. The timeout
is returned/specified in tout. If an error occurs the call returns DS_NOTOK and an
appropiate error code in error.

dev_pending

long dev_pending (devserver ds)

Call to return the number of asynchronous requests still pending replies for device
ds. If ds = NULL then return the total number of pending calls.

dev_putget_asyn()

struct _DevCallbackData {

long asynch_id; /* id of asynchronous call */

DevArgument argout; /* pointer to output argument */

DevType argout_type; /* argout type */

long status; /* status of command execution */

long error; /* error code after command execution */
struct timeval time; /* time at server when command was executed */

} DevCallbackData;

void callback (devserver ds, void *user_data, DevCallbackData cb_data);

72 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

long dev_putget_asyn (ds,cmd,argin,argin_type,argout,argout_type,
callback, user_data, asynch_id, error)

devserver ds; /* client handle */

long cmd; /* command */

DevArgument argin; /* pointer to input arguments */

DevType argin_type; /* type of input arguments */

DevArgument argout; /* pointer to output arguments */

DevType argout_type; /* type of output arguments */
DevCallbackFunction *callback; /* pointer to callback function */

void *user_data; /* pointer to user data to pass to callback */
long *asynch_id; /* asynchronous id returned by call */

long *error; /* error */

Dev_putget_asyn() executes a command asynchronously on the device associated
with the passed client handle. The device must be remote and compiled with
V6. Input and output data types must correspond to the types specified for this
command in the device server’s command list. Otherwise an error code will be
returned. All arguments have to be passed as pointers.

Memory for outgoing arguments will be automatically allocated by XDR, if pointers
are initialised to NULL. To free the memory allocated by XDR afterwards, the
function dev_xdrfree() must be used.

The client continues immediately and does not wait for the server to execute the
request. The callback function has to be specified otherwise an error will be re-
turned. The callback function is triggered by making a call to dev_synch(). The
client can pass data to the callback function via user_data. The callback function
receives the device server handle, user data and a DevCallbackData structure as
input. The function returns a (unique) id in asynch_id for each call.

dev_synch()

long dev_synch (struct timeval *timeout, long *error);

This calls checks to see if any asynchronous replies are pending. If so it triggers
the associated callback routines. The call will wait for a maximum of timeout time
before returning if no replies are received otherwise it returns immediately after
unpacking all received replies. A timeout of zero means check to see if any replies
are pending otherwise returing immediately.

9.4.3 Server

dev_cmd()

long dev_cmd (ds, cmd, argin, argin_type, argout, argout_type, error)
DevServer ds; /* object pointer */
long cmd; /* command */
DevArgument argin; /* pointer to input arguments */
long argin_type; /* type of input arguments */
DevArgument argout; /* pointer to output arguments */
long argout_type; /* type of output arguments */
long *xerror; /* error */

Dev_cmd executes a command on a given object locally in a device server. Memory
freeing must be done with free() and not with dev_xdrfree().

With the extended functionality of dev_putget and dev_put the function should
be used only to access objects which are not exported.

9.4. C LIBRARY 73

To access internal exported devices the unified interface must be used, to avoid
access and security problems in the coming releases.

ds__create()

long ds__create (name, ds_class, ds_ptr, error)

char *name; /* device name */

DevServerClass ds_class; /* class of the object */

DevServer *ds_ptr; /* returned pointer to the object */
long *error; /* error */

Ds_create() creates a new device server object of the class ds_class and will re-
turn a pointer on the object. Before creating the object (DevMethodCreate :
obj_create(3x)) the class and all its superclasses are checked to see if they have
been initialised. If not, then the DevMethodClassInitialise (class_init(3x)) is called
for each uninitialised class.

ds__destroy()

long ds__destroy (ds, error)
DevServer ds; /* object pointer */
long *error; /* error */

Ds__destroy() searches for a destroy method (DevMethodDestroy) in the object
class. If no destroy method is implemented in the object class, its superclasses are
searched. Arriving at the end of the class tree, the destroy method of the general
device server class will be executed.

The general destroy method will free the object correctly only, if no memory al-
location was done for object fields outside the DevServerPart structure of the
object. The device name, as a field of DevServerPart will be freed correctly bye the
general device server class destroy method.

Also exported objects can be destroyed. They will be deleted from the list of ex-
ported devices and all client accesses will be stopped.

dev_export()

long dev_export (name, ds, error)

char *name ; /* device name x/
DevServer ds; /* object pointer */
long *error; /* error */

Dev_export makes devices visible for device server clients. All necessary connection
information for a dev_import() call will be stored in a database table. Moreover
the exported devices are added to the device server’s global list of exported devices.
Dev_export is installed as a method in the DeviceServerClass and accessible by the
name DevMethodDevExport.

ds__method finder()

DevMethodFunction ds__method_finder (ds, method)
DevServer ds; /* *x/
DevMethod method; /* x/

Ds__method_finder() searches for a method in the class hierarchy of the object ds
and returns a pointer to the method function. If the method was not found in the

74 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

object‘s class, the search continues in all its superclasses up to the general device
server class.

If the method is not implemented the method finder takes DRASTIC action and
exits. This has been included in the specification to guarantee that on returning
from the method finder the method can be directly executed.

ds__method_search()

long ds__method_search (ds_class, method, function_ptr)

DevServerClass ds_class; /* class pointer */
DevMethod method; /* method to search for */
DevMethodFunction xfunction_ptr; /* returned pointer to the

method function */

Ds__method_search() searches for a method in the class specified. It returns the
pointer to the method function if the requested method was found in the class. If
no such method was specified the status DS_.NOTOK is returned.

ds__sverun()

long ds__svcrun (error)
long *error; /* error x/

Ds_svcrun() supports the checking of pending RPC requests to the device server
on all open sockets. If requests are available on file descriptors (sockets), the next
pending request for every descriptor will be executed and ds__svcrun() will return
afterwards. If no commands are pending on any descriptor ds__svcrun() should
return after 10ms.

9.4.4 General Purpose Functions
dev_printerror_no()

void dev_printerror_no (mode, comment, dev_errno)
DevShort mode; /* indicates, how to handle the
error message bufferx/
char *comment ; /* comment on error */
long dev_errno; /* error */

If a message service is imported, all error messages are sent to an error file, on the
NETHOST, called :

NETHOST: /DSHOME/api/error/hostname_program-number

NETHOST = device server system host.
DSHOME = device server system directory on NETHOST.
hostname = name of the host where the service is installed.

prog_number = program number of the registered service.

If no message service is imported, all error messages are sent to stderr and printed
on the terminal.

The mode parameter indicates, how to handle the error message buffer. Single
messages can only be 256 characters long. To printout longer messages, short strings
can be buffered and printed later as a text.

e WRITE: Writes error message to buffer.

e SEND: Adds the last error message to the buffer, sends the buffer contents to
an output device and clears the buffer.

9.4. C LIBRARY 75
e CLEAR: Clears the message buffer from all stored messages.

dev_error_str()

char *dev_error_str (dev_errno)
long dev_errno; /* error */

Dev_error_str() returns the error string for a given error number. It first checks to
see if the error is negative. If so it returns an standard error message (negative
errors are not supported). Then it checks if the error is one of the kernel errors
(e.g. NETHOST not defined, RPC timeout etc.) and returns a corresponding
error message. Then it checks to see if a dynamic error message was returned
by the last dev_put_get(), dev_put() or dev_putget_asyn() call, if so it returns this
error message. If none of the above are true it searches the TACO database for the
(static) error string. If an appropriate error string cannot be found in the data base,
dev_error_str() returns a string, indicating the failure. dev_error_str() allocates
memory for the returned error string everytime using malloc(), it is the
client’s responsibility to free this memory using free()!.

dev_error_push()

void dev_error_push (char *error_string);

Dev_error_push is a server side call for generating dynamic error strings. If called
by the server while executing a dev_putget() it will make a copy of the error string
and transmit it back to the client. The client can recover the error string by calling
dev_error_str() immediately after the return of the dev_putget() call in question.
Note if a new call to dev_putget() is made the error string returned by the previous
call(s) is lost. Dev_error_push() can be called multiple times to stack errors if
necessary e.g. to return errors from multiple nested calls.

Dev_error_push() is available only from DSAPI version V8.18 and onwards.

dev_printdebug()

void dev_printdebug (debug_bits, fmt, [a0], [all,)
long debug_bits; /* debug flags */
char *fmt ; /* A printf(3S) like format string x/
double a0, al, ...; /* variables to be printed */

Dev_printdebug sends the debug information if the specified debug_bits are set.
Possible debug-bits (debug flags) are:

#define DBG_TRACE 0x1
#define DBG_ERROR 0x2
#define DBG_INTERRUPT 0x4
#define DBG_TIME 0x8
#define DBG_WAIT 0x10
#define DBG_EXCEPT 0x20
#define DBG_SYNC 0x40
#define DBG_HARDWARE 0x80
#define DBG_STARTUP 0x100
#define DBG_DEV_SVR_CLASS 0x200
#define DBG_API 0x400

Lthis is a common source of memory leaks in TACO clients

76 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

#define DBG_COMMANDS 0x800
#define DBG_METHODS 0x1000
#define DBG_STARTUP 0x100
#define DBG_DEV_SVR_CLASS 0x200
#define DBG_API 0x400
#define DBG_COMMANDS 0x800
#define DBG_METHODS 0x1000
#define DBG_SEC 0x2000
#define DBG_ASYNCH 0x4000

If a message service is imported, debug messages are sent to a named pipe, on the
NETHOST, called :

NETHOST: /DSHOME/api/pipe/hostname_program-number

NETHOST = device server system host.
DSHOME = device server system directory on NETHOST.
hostname = name of the host where the service is installed.

prog_number = program number of the registered service.

If no message service is imported, debug messages are sent to stdout and printed
on the terminal.

9.5. XDR TYPES 7

9.5 XDR types

All DSAPI types are implemented as XDR types. In order to prevent having to
implement too many XDR types (a problem for generic programs e.g. xdevmenu)
a set of kernel types has been defined.? Servers should use ONLY these types as
input and output arguments.

9.5.1 Kernel Types

The DSAPI kernel XDR types are described below. They include all simple C types,
variable length arrays of simple C types and a few DSAPI specific types. Each type
is characterised by a defined symbol (needed by dev_putget () and dev_xdrfree()),
a C type and an XDR routine.

9.5.2 Simple C Types

The following simple C types are implemented as part of the DSAPT kernel :

1. D_VOID_TYPE

typedef void DevVoid

2. D_CHAR_TYPE
typedef char DevChar

3. D_BOOLEAN_TYPE

typedef char DevBoolean

4. D_USHORT_TYPE
typedef u_short DevUShort

5. D_SHORT_TYPE

typedef short DevShort

6. D_USLONG_TYPE

typedef u_long DevULong

7. D_LONG_TYPE
typedef long DevLong

8. D_FLOAT_TYPE
typedef float DevFloat

9. D_DOUBLE_TYPE
typedef double DevDouble

10. D_STRING_TYPE

typedef char* DevString

2in the past new types were added by device server programmer’s as they needed them; this
led to a proliferation of exotic types which was difficult to maintain and which needed to be
implemented by clients

78

9.5.3 Combinations of Simple Types

CHAPTER 9. DSAPI

BY J.MEYER AND A.GOTZ

A number of combinations of simple C types are supported as part of the DSAPI
kernel types :

1.

9.5.4 Variable Length Arrays

D_INT FLOAT_TYPE

typedef struct {
long state;
float value;
} DevIntFloat;

. D_FLOAT_READPOINT

typedef struct {
float set;
float read;

} DevFloatReadPoint;

D_STATE_FLOAT_READPOINT

typedef struct {
short state;
float set;
float;

} DevStateFloatReadPoint;

. D_LONG_READPOINT

typedef struct {
long set;
long read;

} DevLongReadPoint;

D_DOUBLE_READPOINT

typedef struct {
double set;
double read;

} DevDoubleReadPoint;

The second major set of XDR types implemented by DSAPI are the so-called vari-
able length arrays. Variable length arrays are arrays which have a length field
specifying the number of elements in the array. They are described by a C struc-
ture consisting of two fields - an unsigned integer length field and a sequence field.
The sequence is a pointer to an array of of elements of the required type. The C

definition is of variable length arrays is :

struct { u_int length; <Type> *sequence} Dev<Type>VarArr;

where <Type> is the required type.
The following variable length arrays are implemented as part of the DSAPI kernel

types :

XDR TYPES

. D_VAR_CHARARR

typedef struct {
u_int length;
char *sequence;
} DevVarCharArray;

. D_VAR_STRINGARR

typedef struct {
u_int length;
DevString *sequence;
} DevVarStringArray;

. D_VAR_USHORTARR

typedef struct {
u_int length;
u_short *sequence;
} DevVarUShortArray;

. D_VAR_SHORTARR

typedef struct {
u_int length;
short *sequence;
} DevVarShortArray;

. D_VAR_ULONGARR

typedef struct {
u_int length;
u_long *sequence;
} DevVarULongArray;

. D_VAR_LONGARR

typedef struct {
u_int length;
long *sequence;
} DevVarLongArray;

. D_VAR_FLOATARR

typedef struct {
u_int length;
float *sequence;
} DevVarFloatArray;

. D_VAR_DOUBLEARR

typedef struct {
u_int length;
double *sequence;
} DevVarDoubleArray;

80 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

9. D_VAR_FRPARR

typedef struct {
u_int length;
DevFloatReadPoint *sequence;
} DevVarFloatReadPointArray;

10. D_VAR_SFRPARR

typedef struct {
u_int length;
DevStateFloatReadPoint *sequence;
} DevVarStateFloatReadPointArray;

11. D_VAR_LRPARR

typedef struct {
u_int length;
DevLongReadPoint *sequence;
} DevVarLongReadPointArray;

9.5.5 Exotic Types

All other XDR types which are supported by the DSAPI are considered as “exotic”
types and the programmer must refer to the relevant Device Server User Guide
and/or xdr include files. In the future device server programmer’s are urged to
stick to the kernel types and where possible provide equivalent functions for old
classes which use standard kernel types (e.g. using command overloading).

9.6. CHANGES 81

9.6 Changes

9.6.1 Version 8.0

Version 8 introduces support for TANGO. TANGO? is the new version of TACO
based on CORBA (instead of RPC) and with support for C++ and Java. The
TANGO interface allows TACO clients to do a dev_putget() call on a TANGO
device in a transparent manner - simply add ”tango:” in front of the device name
to switch protocol from RPC to CORBA. To use the TACO-TANGO interface
link your C or C++ program with the C++ linker and the libdsapi++ library (or
libdsapig++ if you are using GNU).

9.6.2 Version 7.0

Version 7 introduces events. Events use the same mechanism as the asynchronous
call for dispatching. They allow servers to be programmed to generate true asyn-
chronous events to clients.

9.6.3 Version 6.0

The main changes in the new version are the inclusion of true asynchronous dev_putget ()
calls - dev_putget_asyn() and related calls (cf. “C library reference” above).

9.6.4 Version 5.1

The main changes to this version were the following - support for multi-nethost,
ports to Windows (95 and NT), Linux and VxWorks.

9.6.5 Version 4.1

The main changes here were security was implemented, and port to Ultra C for
059.

9.6.6 Version 3.37
An Asynchronous dev_put()

The new function dev_put_asyn() is similar to the ancient dev_put(). The only
difference is, that dev_put_asyn() sends a request to execute a command to a de-
vice server and returns immediately when the command was received. The only
errors which can be returned by dev_put_asyn() are errors during the sending of the
command. A correct return status only indicates that the command execution was
started. No failures during command execution can be reported back to
the client.

long dev_put_asyn (ds, cmd, argin, argin_type, error)

devserver ds; /* client handle to the device */
long cmd ; /* command to execute */
DevArgument argin; /* pointer to input arguments */
DevType argin_type; /* input argument data type */
long *error; /* error */

3cf. http://www.esrf.fr/tango

82 CHAPTER 9. DSAPI BY JMEYER AND A.GOTZ

Destroying Objects

With the function ds__destroy() a proper interface was created to destroy objects
in a device server. Ds__destroy() searches for a destroy method (DevMethodDe-
stroy) in the object class. If no destroy method is implemented in the object class,
its superclasses are searched. Arriving at the end of the class tree, the destroy
method of the general device server class will be executed.

The general destroy method will free the object correctly only, if no memory al-
location was done for object fields outside the DevServerPart structure of the
object. The device name, as a field of DevServerPart will be freed correctly bye the
general device server class destroy method.

Also exported objects can be destroyed. They will be deleted from the list of
exported devices and all client accesses will be stopped.

long ds__destroy (ds, error)
DevServer ds; /* Pointer to the object */
long *error; /* error */

Attention:

To destroy an exported object, ds-_destroy() must be used. Executing only the
destroy method will not delete the device from the list of exported devices. With
the next client access a nice core will be generated.

Accessing Process Internal Devices

Until version 3.37 the only possibility to access devices internally was the function
dev_cmd(). That was not enough to handle the coming security features. Out of
this reason the functionality of the functions:

dev_import()

dev_putget()
dev_put()
dev free()

was enlarged. They can be used now on all exported devices, remote via RPCs or
internally just via function calls. Dev_import() will detect automatically whether
a device is internal and will avoid all overhang of the remote access on the client
handle. Also memory treatment was unified. All outgoing arguments (remote or
intern) are allocated by XDR. Dev_xdrfree() must be used to free the memory.
Attention:

This unified interface for device access works on all exported devices. Objects
which are not exported, can be accessed only be dev_cmd().

To access process internal devices the unified interface must be used to avoid access
and security problems in the coming releases.

Dynamic Memory Allocation

The general structures handling exported devices and client connections to the
devices

typedef struct _DevServerSec {

long security_key;
long access_right;
long single_user_flag;

} DevServerSec;

9.6. CHANGES 83

typedef struct _DevServerAccess {

DevServer ds;

char export_name[80] ;
long export_status;
long export_counter;
long single_user_flag;
long max_no_of_clients;
DevServerSec *client_access;

} DevServerDevices;

DevServerDevices xdevices /* Exported devices; in DevServer.c */

are no longer static arrays. The are allocated dynamically in data blocks. The
BLOCK_SIZE is defined in ApiP.h and set to 5 structures per data block. To avoid
the growth of a device server, all client connections should be freed correctly.

The Device ID

Every device in a server is referenced by a device ID. The ID is send with every
client call to identify the device and is hidden to the user in the client handle to
the device. Up to version 3.37 the device ID was a simple number. Indicating the
position of the device in the list of exported devices. Now the device ID was split
up into several information fields.

| 31 | 30 20 | 19 12 | 11 0|

|- Position in the
list of exported
devices.

— Position in the
list of client
connections to the
device.

- Export counter

- Local access flag

The export counter field becomes interesting only if you destroy an exported
object and reexport another or the same object again. In the case of a destroyed
object, the export counter is increased and all client connections on the old value
are no longer valid. A newly exported device might take the place in the list of
exported devices afterwards.

The Local access flag is set if the dev_import() detects a local device.

The split up of the device ID limits a device server to the following values:

4096
256

Maximum number of exported devices

Maximum number of client connections per device

84

CHAPTER 9. DSAPI

BY J.MEYER AND A.GOTZ

Chapter 10

Database guide - ndbm
by E.Taurel

10.1 Introduction

The TACO static database is used to keep three kinds of information about device
servers:

1. Device server configuration data called resources.
2. Device and pseudo device information (location, type...).
3. Security data.

Resources are used to configure device server without recompilation. Device in-
formation allows application software to build network connections with devices
through the device server API. Pseudo device information allow easier debugging
session. Security data are used by the device server API to check if a device request
is authorized. The database is filled up with a graphical interface called greta or
with the contents of resource file. A C library allows software to get/store data
from/into this database. A large set of utilities allows a simple management of this
database.

The database itself is the ndbm package which is part of the UNIX operating system.
It is a file oriented database.

TACO is a distributed control system. This is also true for the static database. The
C library get/store data from/into the database through a database server across
the network with RPC’s. This is hidden to the user and implemented in the C
library functions.

10.2 Device and resource definition

10.2.1 The devices list

Within a TACO control system, every device must have a name build with the
following syntax:

DOMAIN/FAMILY /MEMBER

For example, the first attenuator device name on the ESRF beam line behind inser-
tion device 12 must be ID12/att/1 because the device domain is ID12, the device

85

86 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

family is att and the member is 1. A device name must be unique in a TACO
control system.

To identify every device server instance, a device server is started with a per-
sonal name which is different for each instance. For example, a device server for
PerkinElmer vacuum pump called Perkin will be started with the personal name
ID16 when it will drive pump installed on ESRF beam line ID16 and will be started
with the personal name ID11 when it will drive pumps on the ESRF beam line
ID11. The device list must be entered with the following format :

device server process name/personal name/device: device names list
device is a key word allowing the software to know that it is a device list. Example:

BlValves/ID10/device: ID10/rv/1, ID10/rv/2 \
ID10/rv/3

In this case, the device server process name is BlValves, the personal name is ID10
and it drives three devices. The device server must be started on the command line
as BlValves ID10.

In the device list, each device name must be separated by a comma. If the list
continue on the next line, use the character at the end of the line. All devices
driven by the same device server must be defined in only one device list.

A device name must not have more than 23 characters with a family and mem-
ber name limited to 19 characters. A device server process name is limited to 23
characters and the personal name to 11 characters.

10.2.2 Resource definition

A resource is defined with the following syntax:

device name/resource name: resource value
Example
sy/ps-b/1/fbus_channel: 2
sy/ps-b/1/upper_limit: 456.5
sy/ps-b/1/fbus_desc: b0
sy/ps-b/1/error_str: "G64 crate out of order"
sy/ps-b/1/linear_coeff: 8.123, 9.18, 10.78 \

7.32, 101.78, 27.2

Resource name must not exceed 23 characters. Resource value are stored in the
database as ASCII characters and converted to the requested type when they are
returned to the caller. The available types are :

¢ D BOOLEAN_TYPE
e D SHORT_TYPE

¢ D.LONG_TYPE

e D FLOAT_TYPE

e D DOUBLE_TYPE
e D STRING_.TYPE

e D_VAR_.CHARARR
¢ D_VAR_SHORTARR

10.3. GRETA 87

¢ D_VAR.LONGARR
e D_VAR_FLOATARR
e D_VAR_STRINGARR

For the D_.BOOLEAN_TYPE, a resource value can be set in the resource file to 0,
1, False, True, Off, On. It is possible to define resources which are arrays (resource
linear_coeff in the previous example). In this case, each array element are separated
by the , character. To continue the array on the next line, use the character at
the end of the line. It is also possible to give a resource value as a hexadecimal
number if the resource value begins with the Ox characters (C syntax) and if it is
converted to a numerical type. If the resource is a string with spaces, the string
must be enclosed with the ” characters.

It is also possible to define resources for non physical devices and to use them to
configure any software. A resource definition can look like

class/tutu/titi/tata: "When will we eat?"

and be retrieved by a C program. In this case, the second and third fields length is
limited to 19 characters.
To delete resources from a resource file, init the resource value with the character

%.
ID10/att/1/upper_limit: %

will erase the resource upper_limit for the device ID10/att/1 from the database.

10.2.3 Domain names and NDBM files

The domain name is the device or resource name first field. In a TACO control
system, domain names are free. Nevertheles, data for each domain are stored in
two different files and the database server needs to know all the domain names
involved in a control system. This is done by the DBTABLES environment vari-
able. This variable is a list (comma separated) of all the domain used in the control
system.. It is recommended to have the CLASS, CMDS, ERROR, SYS and
SEC domains to get all the device server features running correctly. A NAMES
and PS_NAMES pseudo domain names are automatically added to the list of the
user defined domain names.

The SEC domain is reserved for the security aspect of the device server model. All
the update, insert, delete from this domain are protected by a password.

The SYS domain is a generic domain for resources and devices which are part of
the beam line control system itself (data collector resources...)

The CMDS and ERROR domain are used to store error messages and commands
strings.

Files used by the NDBM software to keep data (two files per domain) are stored in
a directory pointed to by the DBM_DIR environment variable software also needed
by the database server.

10.3 Greta

Greta (Graphical Resource Editor for TAco) is the graphical interface to the TACO
static database. This tool allows the user to retrieve, add, delete or update re-
sources, to add, delete update device list for a device server, to save/load data
to/from a file, to get device, server or database informations. For greta, all the
informations stored into the database are splitted into three parts which are :

88 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

1. The device list : All the entities defined as served by a device server
2. The server list : List of all device server defined in the database

3. The resource list : All the resources defined in the database including resources
which don’t belong to any device

10.3.1 The device window

To open a device window, click on File-Open device. A database device browsing
window is poped-up. Once a device is selected (by double click on the field name
or by pressing the filter button), pressing the open button or a double click on the
Member field will poped-up a device window.

The Informations part of the device window contains device information like device
server host, device server PID, device class... This sub-window is not editable. The
Resources sub-window displays all the resources defined for the selected device and is
editable. It is possible to update, delete, add device resource(s) in this sub-window.
The five window main buttons are :

e Update to update the database with the contents of the above sub-window.
A confirmation window is poped-up

e Cancel to close the window without any database change

e Delete to delete the device from database. A window is poped up in order
to give the user the choice to delete device with or without its resources.

e Ping to ping the device. The device answers to such request only if the device
server is linked with DSAPI release 5.11 and above.

e (Re)start to start or restart the device server in charge of the selected device.
This feature is available only for device served by a device server linked with
database software release 5.0 and above and also if the ”starter” device server
release 2.0 or above is running on the host where the device server is running.
If it is not the case, an alarm window is poped_up. In all cases, a confirmation
window is poped up.

Under the window File button, it is possible to :
e Print window content
e Save window content to a file

e Close the window

Under the Edit button, the user will find the classical edit features plus the ”insert
device resource” button. If some device resources are device name, by selecting this
device name and clicking in Edit-insert device resource, all the resources belonging
to the newly selected device will be added at the bottom of the Resources sub-
window. This feature is also possible by a click on the right mouse button when
the device name is selected.

It is possible to open up to 10 different device windows. The device name is displayed
in the window title.

10.3. GRETA 89

Device id11/pen/01

iid11/pen/01/ass_pir: 4
id11/penf01/ce_type: 2
id11/penf01/controller: ID11/VGCA
id11/penf01/debug: 0
id11/pen/01/file_cal: PEN1_CAL.TAB
id11/pen/01/filter: 4
id11/penf01/ident_relayl: D
id11/pen/0lfident_relay2: @
id11/penf01/indice: 2
id11/penf01/interlock: 0
id11/penf01/max_current: 1.0E-05
id11/penf01/nb_relay: 1
id11/pen/01/pen_calibration: 1
id11/penf01/relay _conf: 0
id11/penf01{rom_wversion: 2.04
id11/penf01/set_relayl: 5.0E-06
id11/penf01/set_relay?2: 5.0E-06
id11/penf01/stat_relayl: 0
id11/pen/01/stat_relay2: 0
id11/penf01/type: PEN
id11/pen/01/ud_command_list: DevUpdate

e

= B B B ==

Figure 10.1: Greta device window

90 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

Server blvalves/id11

blvalvessid11/device : id11/rv/0,id11/r/2,id11/m/3,id11/mvid
id1 1/rv5.id11/me/6

iid11/rv/0/channum: 0
id11/rvi0/ud_command_list: DevState
id11/rvf0/ud_poll_interval: B0

id11/rv/2/channum: 2
id11/rvi2/ud_command_list: DevState
id11/rvi2/ud_poll_interval: B0

id11/rv/3/channum: 3
id11/rv/3/ud_command_list: DevState
id11/rvf3/ud_poll_interval: B0

id11/rv/d/channum: 4
id11/rvid/ud_command_list: DevState
id11/rvidfud_poll_interval: B0

id11/rvw/S/channum: 5

Figure 10.2: Greta server window

10.3. GRETA 91

10.3.2 The server window

To open a server window, click on File-Open server. A database server browsing
window is poped-up. Once a server is selected (by double click on the field name
or by pressing the filter button), pressing the open button or a double click on the
Personal name field will poped-up a server window.

The Informations part of the device window contains server informations like devices
number defined for this server, device name... This sub-window is not editable.
The ”In charge device list” sub-window displays the list of device(s) defined for
this server. This list follows the syntax described in the device list chapter. This
sub-window is editable and the device list can be modified. The Resources sub-
window displays all the resources belonging to each server device and is editable.
It is possible to update, delete, add device resource(s) in this sub-window. The five
window main buttons are :

e Update to update the database with the contents of the two editable sub-
windows. A confirmation window is poped-up

e Cancel to close the server window without any database change

e Unreg to unregister the server from the database. To unregister a server
from the database means to mark all its devices as non-exported (unable to
answer to network request). A confirmation window is poped-up.

e Delete to delete the server from database. A window is poped up in order
to give the user the choice to delete the server with or without all its devices
resources.

o (Re)start to restart the device server. This feature is available only for
device server linked with database software release 5.0 and above and also if
the ”starter” device server release 2.0 or above is running on the host where
the selected device server is running. If it is not the case, an alarm window is
poped_up. In all cases, a confirmation window is poped up.

Under the window File button, it is possible to :
e Print window content
e Save window content to a file
e Close the window

Under the Edit button, the user will find the classical edit features plus the ”insert
device resource” button. If some device resources are device name, by selecting this
device name and clicking in Edit-insert device resource, all the resources belonging
to the newly selected device will be added at the bottom of the Resources sub-
window. This feature is also possible by a click on the right mouse button when
the device name is selected.

It is possible to open up to 10 different server windows. The server name is displayed
in the window title.

10.3.3 The resource window

To open a resource window, click on File-Open resources. A database resource
browsing window is poped-up. Once a resource is selected (by double click on the
field name or by pressing the filter button), pressing the open button or a double
click on the Name field will poped-up a server window. It is always proposed by
greta to use the wildcard * as Member and/or Name field.

92 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

Resources matching cmds/5/% /%

‘emds/5/16/1: DevSensiCamExpose
cmds/SHA6/2: DevSensiCamStop
cmdsfH16/3: DevSensiCamRead
cmdsfH16/4: DevSensiCamLoadLUT
cmdsfHA7A: DevSensiCamStart
cmds/SA72: DevSensiCamStop
cmds/HSA713: DevSensiCamRead
cmds/S7/4: Dev3ensiCamLoadLUT
cemds/H75: DevSensiCamExposure
cmds/H7/6: Dev3ensiCamR Ol
cmds/S/3/1: DevSetOffset
cmds/Hi32: DevReadOffset
cmds/3/3: DevReadRange
cmds/Sfdil: DevSerWriteString
cmds/Hidi2: DevSerWriteChar
cmds/Sidi3: DevSerReadString
cmds/Sidid: DevSerReadChar
cmds/Siain: DevSerSetParameter

Cancel

Figure 10.3: Greta resource window

10.3. GRETA 93

[~ Newsewer |

Figure 10.4: Greta new server window

The Resources sub-window displays all the resources selected This sub-window is
editable. It is possible to update, delete, add device resource(s) in this sub-window.
The two window main buttons are :

e Update to update the database with the contents of the above sub-window.
A confirmation window is poped-up

e Cancel to close the window without any database change
Under the window File button, it is possible to :

e Print window content

e Save window content to a file

e Close the window

Under the Edit button, the user will find the classical edit features.
It is possible to open up to 10 different resources windows.

10.3.4 The new server window

The new server window allows a user to create new device server within the database.
This window is poped-up after a click on File-New server. The user must fill in the
server name field with the device server name and the personal name field with the
argument used to start the device server. The device list must also be filled in as
described in the device list chapter of this documentation. When these three fields
are filled in, clicking on OK will register the server in the database. To define server
device(s) resources, open a server window as explained earlier.

10.3.5 The load file window

Once a file as been selected in the file selection window, the file contents is displayed
in a separate window. This window is not editable. The two window main buttons
are :

94 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

Jtmp/cmdsh.res

Figure 10.5: Greta file window

10.4. RESOURCE FILE 95

e Update to update the database with the contents of the above sub-window.

e Cancel to close the window without any database change

10.3.6 The Option menu
Four options are implemented. These options are :

e Server displayed with class resources. This option deals only with server
window. When this option is chosen, class resources are also displayed in the
server window Resources part. Class resources are all the resources with the
following syntax :

— class/server name/* /*

— class/device_class/*/*

e Display all embedded server in a process. This option is usefull when
several device servers are embedded in one process. If such a process is selected
in the server selection window, device list and device resources for all the server
embedded in the process will be displayed in the server window.

e Display device data collector info. If this option is set, a forth part
is added to the device window. This sub-window (not editable) is entitled
”DC/HDB informations”. It displays data related to the device and the TACO
data collector. If the device is registered in the data collector, the command
used for polling is displayed as well as the time needed to execute the last
command. The polling period is also displayed and the time spent since the
last command result update. Some informations about the poller process in
charge of the device are also displayed (host where the poller is running, its
PID...)

e Display device history database info. If this option is set, a forth part
is added to the device window. This sub-window is entitled ”DC/HDB infor-
mations”. It displays the storage mode chosen to store device data into HDB
(History DataBase) and the last nine records value with their record dates.

If the last two options are selected, DC and HDB informations are displayed in the
same sub-window of the device window.

10.3.7 Other features

Some miscellaneous features are also incorporated into greta.

Global-Informations : Display in greta main window general database informations.
These informations are the number of devices defined in the database, the number
of exported devices for each device’s domain, the pseudo-devices number and the
number of resources for each domain.

Help—On version : Display a window with the greta software release number
File-Print : Print the greta main window

File-Exit : Exit the application

10.4 Resource file

A resource file is the way to store resource and device information into the static
database. The user writes its resource file and updates the database with one of
the database utilities called db_update. Then a C program (a device server or any
other C program) is able to retrieve these resources with a library call and in the

96 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

case of a device server, it is also able to mark its devices as exported to the rest of
the world (ready to accept requests).
A resource file is divided in two parts which are:

e The list of devices driven by a particular instance of a device server. The
same device server can run on several computers. This list allows the system
to know that the this particular instance of the device server drive this list of
devices.

e Resources definition

A resource file must have a suffix .res. Any line beginning with the # character
will be considered as a comment line. It is not allowed to begin comment at the
middle of a line. Blank lines are allowed. All the resource files must be stored
in directory and sub-directories under a defined path which is known to the static
database utilities by the RES_BASE_DIR, environment variable. On most of the
ESRF beam line control system, the resource files base directory is dserver login
directory/dbase/res. For test purpose, another resource database is running on
margaux.

10.5 Utilities

These utilities are commands run from the UNIX command line. They can be
grouped in three different parts which are:

e Database administration commands
e Database user commands
e Security commands

These utilities are briefly describe below. Man pages are available to get complete
information.

10.6 Database administration commands

10.6.1 db_fillup

db_fillup <data_source>

This command creates the database into memory and load it with resource files
contents or with a database backup file according to the data_source parameter.
This command directly access the ndbm files (not via the server) and therefore needs
the DBM_DIR and DBTABLES environment variables. To hide these environment
variables, this command is alittle script which set these environment variable and
then, call the real command with the argument given by the user. The setting of
these environment variables is done by a file called dbm_env. Example :

db_fillup O

10.6.2 db_info

db_info

This command displays the total number of devices and resources defined in the
database as well as the number of devices and resources for each domain. Example

10.7. DATABASE USER COMMANDS 97

$db_info
DEVICE STATISTICS

90 devices are defined in database
84 of the defined devices are actually exported:
0 for the CLASS domain
6 for the SYS domain
0 for the ERROR domain
0 for the CMDS domain
0 for the SEC domain
78 for the ID16 domain
12 pseudo devices are defined in database

RESOURCE STATISTICS

4126 resources are defined in database:
42 resources for the CLASS domain
28 resources for the SYS domain
348 resources for the ERROR domain
651 resources for the CMDS domain
0 resources for the SEC domain
3057 resources for the ID16 domain

10.6.3 db_read

db_read <domain name>

This function displays all the data recorded in the database for a specific domain.
This command directly access the ndbm files (not via the server) and therefore needs
the DBM_DIR and DBTABLES environment variables. To hide these environment
variables, this command is alittle script which set these environment variable and
then, call the real command with the argument given by the user. The setting of
these environment variables is done by a file called dbm_env. Example :

$db_read class

CLASS: relayserver|id16|unittypell|: icv196
CLASS: dcl|1|host|1|: inelil

CLASS: dcl|1|max_calll|1|: 1000

CLASS: dc|1|36_default|1]|: inell

CLASS: dcl|inell|dev_number|1]|: 100

CLASS: dclinelillcellar_number|1]: 50

CLASS: dclinell|path|1l|: /users/b/dserver/system
CLASS: dclinell|login|1|: dserver

CLASS: dcl|server_nblinell_rd[1]|: 2

10.7 Database user commands

10.7.1 db_update
db_update <file>

This command allows a user to load into the database all the resources and devices
list defined a resource file. It will insert new resources or update already existing
ones. It will also updates or insert device information. Example :

db_update FluoScreen_ID16.res

98 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

10.7.2 db_devres

db_devres <device_name>

db_devres displays all the resources belonging to a device. Example :

$ db_devres idi16/att/1
blockl : ID16/attl_b/1
number_of_blocks : 3
block3 : ID16/attl_b/3
unitnumber : 1

block2 : ID16/attl_b/2
fluorscreen : NO
attenuatornum : 1

10.7.3 db_devinfo

db_devinfo <device_name>

db_devinfo displays device (or pseudo device) information. For device, these infor-
mation are the host name where the device server in charge of the device is running,
the device server process identifier and the device server name. For pseudo device,
it is just the PID and the host of the process which created the pseudo device.
Example (for a real device) :

$ db_devinfo id16/att/1

Device id16/att/1 belongs to class : attenuatorClass

It is monitored by the server : attenuator/id16 version 1

The device server process name is : attenuator

This process is running on the computer : id161 with process ID : 117

Example (for a pseudo device) :

$ db_devinfo id16/bidon/1
Device id16/bidon/1 is a pseudo device
It is created by a process with PID : 234 running on host : inell

10.7.4 db_servinfo

db_servinfo <full device server name>

This command displays the device list for a specific device server. The device
server is specified by its full device server name which is the device server pro-
cess name/personal name. For device server with several embedded classes, device
belonging to each class wil be displayed. Example :

$ db_servinfo attenuator/id16
Device number 1 : id16/att/1 exported from host id161
The device server is part of the process : attenuator with PID : 45

10.7.5 db_devdel

db_devdel [-r] <device_name>

This command delete a device (or a pseudo device) and all its resources from the
database. The -r option prevents the command to also remove all the device re-
sources. Example :

$ db_devdel idi12/att/1

10.8. SECURITY COMMANDS 99

10.7.6 db_resdel

db_resdel <device name/resource name>

This command deletes a resource from the database. Example :

$ db_resdel fe/id/10/io_word

10.7.7 db_servdel

db_servdel [-r] <full device server name>
This command deletes all the device(s) belonging to a device server from the

database. It also deletes all the resources belonging to these devices. The -r option
prevents the command to delete resources. Example :

$ db_servdel attenuator/id16

10.7.8 db_servunreg

db_servunreg <full device server name>

This command unregisters all the device(s) belonging to a device server from the
database. After this command, all the devices are not exported anymore. Example

$ db_servunreg attenuator/id16

10.8 Security commands

10.8.1 dbm_sec_passwd

dbm_sec_passwd

It is possible to protect security data (in the SEC domain) with a password. This
password will be asked for each insert/update into the SEC domain. dbm_sec_passwd
is the command which allows to define or change the password.

10.8.2 dbm _sec_objinfo

dbm_sec_objinfo <obj_name>

dbm _sec_objinfo displays security data for a given object. A object can be a domain,
a family or a device.

10.8.3 dbm_sec_userinfo

dbm_sec_userinfo [-u user_name] [-g group_name]

sec_userinfo returns all accesses specified for a user and (or) for a group.

100 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

10.9 The C library

A C library with 39 calls has been written which allows a C program to
e retrieve, update, insert, delete resources.

e retrieve device list, mark device as exported, return device information.

retrieve all or part of the exported devices.

register and unregister pseudo devices

browse the database

retrieve command code from command name

These calls are briefly described here. Man pages are available for all of them to
get complete information. The library (client part of RPC calls) is available for
HP-UX, Solaris, OS-9 and Linux.

10.10 Resource oriented calls

All the following calls are linked to resources

10.10.1 db_getresource()

int db_getresource (dev_name, res, res_num, error)

char *dev_name; /* The device name */

Db_resource res; /* Array of res. name, type and pointer to store
resource value */

unsigned int res_num; /* Resource number */

long *Xerror; /* Error */

This function retrieve resources from the database, convert them to the desired type
and store them at the right place.

10.10.2 db_putresource()

int db_putresource (dev_name, res, res_num, error)

char *dev_name; /* The device name */

db_resource *res; /* Array of res. name, type and pointer to
resource value */

unsigned int res_num; /* Resource number */

long *xerror; /* Error */

This function update already defined resource(s) or add new resource(s) if it (they)
does not exist. Resource files are not updated by this function. It is not possible to
update/insert resource belonging to the SEC domain.

10.10.3 db_delresource()

int db_delresource (dev_name, res_name, res_num, error)

char *dev_name; /* The device name */
char **res_name; /* Resource name(s) to be deleted. */
unsigned int res_num; /* Resource number */

long *error; /* Error */

10.11. EXPORTED DEVICE LIST ORIENTED CALLS 101

db_delresource allows a user to remove resources from the database. The resource
file where the resource was initially defined is not updated. It is not possible to
delete resource(s) from the SEC domain with this function.

10.11 Exported device list oriented calls

The two following calls are used to get information on which devices are available
for request in the control system.

10.11.1 db_getdevexp()

int db_getdevexp (filter, tab, dev_num, error)

char xfilter; /* The filter to select exported devices */
char ***tab; /* Exported devices name */

unsigned int *dev_num; /* Exported devices number */

long *error; /* Error */

This function allows a user to get the name of exported (and then ready to accept
command) devices. With the filter parameter, it is possible to limit the devices
name returned by the function. This function is not available for OS-9 client.

10.11.2 db_freedevexp()

int db_freedevexp (ptr)
char **ptr; /* Exported devices name array*/

The previous function can return a lot of device names and allocate memory to
store them. This call is a local call and frees all the memory allocated by the
db_getdevexp function.

10.12 Device oriented calls

The following functions are device oriented.

10.12.1 db_getdevlist()

int db_getdevlist (ds_full_name, dev_tab, dev_num, error)

char *ds_full_name; /* Full device server name (device server
process name/personal name) */

char **x*xdev_tab; /* Device name(s) array */

unsigned int *dev_num; /* Device number */

long *error; /* Error */

db_getdevlist returns to the caller the devices list for the device server with the full
device server name ds_full_name.

10.12.2 db_dev_import()

int db_dev_import (name, tab, dev_num, error)

char **name ; /* Device(s) name to be imported */
Db_devinf_imp *tab; /* RPC device(s) parameters array */
unsigned int dev_num; /* Device number */

long *xerror; /* Error x/

102 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

This function returns all the necessary parameters to build RPC connection between
a client and the device server in charge of a device. It allows to retrieve these RPC’s
information for several devices at the same time.

10.12.3 db_dev_export()

int db_dev_export (devexp, dev_num, error)

Db_devinf *tab; /* RPC device(s) parameters array */
unsigned int *dev_num; /* Device number */
long *error; /* Error */

This function stores into the database the network parameters for a device or a
group of devices. The network parameters are all the information needed by RPC
to build a connection between a client and the device server in charge of a device.

10.12.4 db_deviceinfo()

long db_deviceinfo (dev_name, devinfo, error)

char *dev_name; /* Device name */
db_devinfo_call *devinfo; /* Device informations */
long xerror; /* Error */

This function returns to the caller a structure with many device informations. These
informations are the name of the server in charge of the device, the host where it is
running, the device server program number, the device class...

db_deviceres()

long db_deviceres (dev_nb, dev_name_list, res_nb, res_list, error)

long dev_nb /* Number of device */

char **xdev_name_list; /* Device name list */

long res_nb; /* Number of resource(s) */
char **x*xres_list; /* Resource(s) list */

long *Xerror; /* Error */

This function returns to the caller the list of all resources for a list of devices. The re-
sources are returned as string(s) with the following syntax : ”device name/resource
name : resource value”.

10.12.5 db_devicedelete()

long db_devicedelete (dev_name, error)
char *dev_name; /* Device name */
long *xerror; /* Error */

This function deletes a device from the list of device registered in the database.

10.12.6 db_devicedeleteres()

long db_devicedeleteres (dev_nb, dev_name_list, error)

long dev_nb; /* Number of device */
char **xdev_name_list; /* Device name list */
db_error *error; /* Error */

This function deletes all the resources belonging to a list of devices from the
database.

10.13. SERVER ORIENTED CALLS 103

10.12.7 db_getpoller()

long db_getpoller (dev_name, poll, error)

char *dev_name; /* Device name */
db_poller *poll; /* Device poller info */
db_error *error; /* Error */

This function returns to the caller information about the device poller in charge of
a device. A poller is a process in charge of ”polling” the device in order to store
device command result into the TACO data collector. The poller informations are
the poller name, the host where it is running,....

10.13 Server oriented calls

The following functions deals with device server.

10.13.1 db_svc_unreg()

int db_svc_unreg (ds_full_name, error)

char *ds_full_name; /* Full device server name (dev. server process
name/personal name) */
long Xerror; /* Error */

db_svc_unreg mark all the devices driven by the device server with a full name
ds_full_name as not exported devices.

10.13.2 db_svc_check()

int db_svc_check (ds_full_name, h_name, p_num, v_num, error)

char **ds_full_name; /* Full device server name (dev. server
process name/personal name) */

char *h_name; /* Device server host name */

unsigned int *p_num; /* Device server program number */

unsigned int *v_num; /* Device server version number */

long *error; /* Error */

This function returns host name, program number and version number of the first
device found in the database for the device server with the full name ds_full_name.

10.13.3 db_servinfo()

long db_servinfo (ds_name, pers_name, s_info, error)

char *ds_name; /* Device server name */

char *pers_name; /* Device server personal name */
db_svcinfo_call *s_info; /* Server information */

long *error; /* Error */

This function returns miscellaneous informations for a device server started with a
personal name. These informations are the number and name of device served by
the server, the device server process name....

104 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

10.13.4 db_servdelete()

long db_servdelete (ds_name, pers_name, delres_flag, error)

char
char
long
long

*ds_name;
*pers_name;
delres_flag;
*error;

/* Device server name */

/* Device server personal name */

/* Delete device(s) resource flag */
/* Error x/

This function deletes a device server from the database and if needed, all the server

device resources.

10.13.5 db_servunreg()

long db_servunreg (ds_name, pers_name, error)

char
char
long

*ds_name;
*pers_name;
*error;

/* Device server name */
/* Device server personal name */
/* Error */

This function unregisters (mark device(s) as not exported) for all the device(s)
served by the device server ds_name started with the personal name pers_name.

10.14 Database browsing oriented calls

All the following 11 calls allows database browsing

10.14.1 db_getdevdomainlist()

long db_getdevdomainlist(domain_nb, domain_list, error)

long
char
long

*domain_nb;
*x*domain_list;
*error;

/*
/*
/*

The number of domain */
Domain name list */
Error */

This function returns to the caller a list of domain used for all devices defined in

the database.

10.14.2 db_getdevfamilylist()

long db_getdevfamilylist(domain, family_nb, family_list, error)

char
long
char
long

*domain;
*family_nb;
**xxfamily_list;
*error;

/*
/*
/*
/*

The domain name */

The number of families */
Family name list */

Error */

This function returns to the caller a list of families for all devices defined in the
database with the first field set to a given domain name.

10.14.3 db_getdevmemberlist()

long db_getdevmemberlist(domain, family, member_nb, member_list, error)

char
char
long
char
long

*domain;
*family;
*member_nb;
**x*xmember_list;
*error;

/*
/*
/*
/*
/*

The domain name */

The famiy name */

The number of members */
Member name list */
Error */

10.14. DATABASE BROWSING ORIENTED CALLS 105

This function returns to the caller a list of members for all devices defined in the
database with the first field name set to a given domain and the second field name
set to a given family.

10.14.4 db_getresdomainlist()

long db_getresdomainlist(domain_nb, domain_list, error)

long *domain_nb; /* The number of domain */
char ***domain_list; /* Domain name list */
long *error; /* Error */

This function returns to the caller a list of domain used for all resources defined in
the database.

10.14.5 db_getresfamilylist()

long db_getresfamilylist(domain, family_nb, family_list, error)

char *domain; /* The domain name */

long xfamily_nb; /* The number of families */
char *x*family_list; /* Family name list */

long *error; /* Error */

This function returns to the caller a list of families for all resources defined in the
database with the first field name set to a given domain name.

10.14.6 db_getresmemberlist()

long db_getresmemberlist(domain, family, member_nb, member_list, error)

char *domain; /* The domain name */

char *family; /* The famiy name */

long *member_nb; /* The number of members */
char **x*member_list; /* Member name list */

long *Xerror; /* Error */

This function returns to the caller a list of members for all resources defined in the
database with the first field name set to a given domain and the second field name
set to a given family.

10.14.7 db_getresresolist()

long db_getresresolist(domain, family, member, resource_nb, resource_list, error)

char *domain; /* The domain name */

char *family; /* The famiy name */

char *member ; /* The member name */

long *resource_nb; /* The number of members */
char **x*resource_list; /* Resource name list */
long *error; /* Error */

This function returns to the caller a list of resource name for all resources defined
in the database for a device with a specified domain family and member field name.

106 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

10.14.8 db_getresresoval()

long db_getresresoval(domain, family, member, resource, resval_nb, resource_list, error)

char *domain; /* The domain name */

char xfamily; /* The famiy name */

char *member ; /* The member name */

char *resource; /* The resource name */

long *resval_nb; /* The number of resource values */
char **x*xresource_list; /* Resource value list */

long *error; /* Error x/

This function returns to the caller a list of resource values for all the resource with
a domain, family, member and name specified in the first four function parameters.
Member and resource field name can be set to wild card (*).

10.14.9 db_getdsserverlist()

long db_getdsserverlist(server_nb, server_list, error)

long *server_nb; /* The number of device server */
char ***kserver_list; /* Server name list */
lon *error; /* Error */

)

This function returns to the caller a list of device server executable name.

10.14.10 db_getdspersnamelist()

long db_getdspersnamelist (server, persname_nb, persname_list, error)

char *xserver; /* The device server executable name */
long *persname_nb; /* The number of personal name */

char x**persname_list; /* Personal name list */

long *error; /* Error x*/

This function returns to the caller a list of device server personal name list for device
server with a given executable name.

10.14.11 db_gethostlist()

long db_gethostlist(host_nb, host_list, error)

long xhost_nb; /* The number of host name */
char **xxhost_list; /* Host name list */
long *error; /* Error x/

This function returns to the caller a list of hosts name where device server should
run.

10.15 Pseudo device oriented calls

10.15.1 db_psdev_register()

int db_psdev_register (psdev, num_psdev, error)
db_psdev_info *psdev; /* Pseudo device parameters array */
long num_psdev; /* Pseudo devices number */
db_error *error; /* Error */

10.16. DATABASE UPDATE CALLS 107

This function is used to register pseudo devices into the database. This feature has
been implemented only for control system debug purpose. It helps the debugger to
know which process has created pseudo devices and on which computer they are
running.

10.15.2 db_psdev_unregister()

int db_psdev_unregister (psdev_list, num_psdev, error)

char x*psdev_list; /* Pseudo device(s) names list */
long num_psdev; /* Pseudo devices number */
db_error *error; /* Error */

This function is used to unregister pseudo devices from the database.

10.16 Database update calls

10.16.1 db_analyse _data()

long db_analyse_data (in_type, buffer, nb_devdef, devdef, nb_resdef, resdef,
error_line, error)

long in_type /* Buffer type (buffer or file) */

char xbuffer; /* Buffer */

long *nb_devdef; /* Number of device definition list */
char **x*xdevdef; /* Device definition list */

long *xnb_resdef; /* Number of resource definition list */
char **x*xresdef; /* Database definition list */

long *error_line; /* Buffer line number with error */

long *xerror; /* Error */

This function analyses a buffer (file or buffer) assuming that this buffer is used to
update the database and returns device definition list and resource definition list.

10.16.2 db_upddev()

long db_upddev (nb_devdef, devdef, deferr_nb, error)

long nb_devdef; /* Number of device definition list */
char *xdevdef ; /* Device definition list */

long xdeferr_nb; /* Device def. list number with error */
long *Xerror; /* Error */

This function updates the database with the new device definition defined in the
device definition list.

10.16.3 db_updres()

long db_updres (nb_resdef, resdef, deferr_nb, error)

long nb_resdef; /* Number of resource definition */
char *xresdef; /* Resource definition list */

long *deferr_nb; /* Resource def. number with error x/
long *xerror; /* Error */

This function updates the database with the new resource definition contained in
the resource definition list.

108 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

10.17 Miscellaneous calls

db_stat()

long db_stat (info, error)
db_stat_call *info; /* Database information */
long *error; /* Error */

This functions returns database global informations as the number of exported
devices defined in the database, the number of resources defined for each device
domain...

db_secpass()

long db_secpass (pass, error)
char **pass; /* Database security password */
long *xerror; /* Error */

The static database is also used to store security resources. A very simple sys-
tem protects security resources from being updated by a user if the administrator
choose to protect them. This function returns database protection data to the caller
allowing an application to ask its user for security resources password.

db_cmd_query()

int db_cmd_query (cmd_name, cmd_code, error)

char *cmd_name; /* Command name */
unsigned int *cmd_code; /* Command code */
long *error; /* Error */

The static database is also used to store (as resources) command name associated
to command code (in the CMDS domain). db_cmd_query returns the command
code associated to a command name.

db_svc_close()

int db_svc_close (error)
long *error; /* Error */

This function asks the database server to close all the files needed to store database
data (the ndbm files) allowing another process to open these files. When this
function is called, no further call to database server will work until the db_svc_reopen
function will be executed.

db_svc_reopen()

int db_svc_close (error)
long *error; /* Error */

This function asks the database server to reopen database files.

10.18 Multi TACO control system access

With release 5.5 and above of database software, the db_getresource and db_dev_import
calls of the C library have been modified in order to allow acess to multiple TACO
control system. To specify which TACO control system should be used, a forth field

10.18. MULTI TACO CONTROL SYSTEM ACCESS 109

must be added to the device name. This forth field is the name of the computer
where the TACO anchor process is running (The process called Manager). In this
case, the naming syntax is :

//FACILITY /DOMAIN/FAMILY /MEMBER

The facility name is also known as NETHOST. Example of device name which
specify the machine control system : //ARIES/SR/D_.CT/1. Another example
for a device sy/ps-b/1 defined in a control system where the nethost is libra:
//LIBRA/SY /PS-B/1. For device where the nethost is not specifed, the NETHOST
environment variable is used.

The db_dev_import enables a user to retrieve necessary parameters to build RPC
connections between clients and server for several devices with the same call. The
TACO control system defined by the first device of the list will be used.

110 CHAPTER 10. DATABASE GUIDE - NDBM BY E.TAUREL

Chapter 11

Events
by A.Gotz

11.1 Introduction

The TACO control system was originally based on synchronous remote procedure
calls (RPCs) and the client-server model. Clients and servers which required asyn-
chronism made use of the data collector (a distributed online buffer of device com-
mand results) or the servers implemented their own mini-buffers locally and the
clients polled the server. This is not always efficient in terms of time, network
bandwidth and CPU usage. Therefore an asynchronous call was added and has
been available for over a year now. The asynchronous call implements the mecha-
nisms necessary to add events without much effort. It was logical therefore with the
recent move towards Linux on frontends to take advantage of the excellent TCP /IP
stack implementation on Linux to offer programmers and clients events.

The present implementation offers a simple model for user events which will per-
mit device server programmers to add their own events (user events) to their code
thereby providing adding value to their device servers. The present implementation
is ideal for device servers which have a small number of clients. A full implementa-
tion with sophisticated system and user events which provides efficient mechanisms
for distributing events to large numbers of clients will be implemented in TANGO
(next generation TACO). The present implementation in TACO is simply an avant-
gout of TANGO events and allows TACO programmers to gain experience using
events.

This chapter presents the user event api, examples of how to program them and a
discussion on performance and problems which can arise.

11.2 Events

Events are short messages which are sent to clients asynchronously. The origin of
the messages is a device server. Clients only receive messages if they have solicited
them. Events are classified according to type. Event types are specific to the device
server and should be defined as unique long integers. The most obvious way to do
so is to use the device class unique base as offset and number events starting from
leg. :

1. #define D_EVENT_AGPS_STATE DevAgpsBase + 1

2. #define D_EVENT_0OMS_STATE_CHANGE DevOmsBase + 1

111

112 CHAPTER 11. EVENTS BY A.GOTZ

11.3 API

The event API consists of three additional calls which are distributed as part of the
DSAPI. The API consists of a client part and a server part. The client part allows
a client to register its interest in events , to receive events and to unregister once it
is finished. The server part allows servers to dispatch events to clients. The server
has to program how to trigger events.

11.3.1 Client side

e dev_event_listen() - register a callback for an event type

long dev_event_listen (devserver ds, long event_type,
DevArgument argout, DevType argout_type
DevCallbackFunction *callback,
void *user_data, long *event_id_ptr,
long *error)

devserver ds - device from which client wants to receive events

long event_type - type of event to receive

DevArgument argout - pointer to argout data (if any) which will be sent with event
DevType argout_type - argout type

DevCallbackFunction *callback - pointer to callback function

void *user_data - pointer to user data to pass to callback function

long *event_id_ptr - pointer to event id (returned by dev_event_listen())

long *error - pointer to error code (if any)

e dev_event_unlisten() - unregister a callback for an event type

long dev_event_unlisten (devserver ds, long event_type,
long event_id, long *error)

devserver ds - device from which to unregister client’s interest in event
long event_type - event type to unregister

long event_id - event id (returned by dev_event_listen())

long *error — pointer to error code (if any)long dev_event_fire

e dev_synch() - poll network to check if any events have arrived and trigger
callback

long dev_synch (struct timeval *timeout, long *error)

struct timeval *timeout - pointer to maximum time to wait while polling
long *error - pointer to error code (if any)

11.3.2 Server side

e dev_event_fire() - a server call to diispatch a user event to all clients which
have registered their interest in that event with this server

— C using Objects in C :

long dev_event_fire (DevServer ds, long event_type,
DevArgument argout,DevIype argout_type,
long event_status, long event_error)

11.4. IMPLEMENTATION 113

long event_type - event type to dispatch

DevArgument argout - pointer to argout to dispatch with event

DevType argout_type - argout type

long event_status - status of event to dispatch to client

long event_error - error code of event to dispatch to client (if status != DS_0K)

— C++ using the Device class :

long dev_event_fire (Device *device, long event_type,
DevArgument argout,DevType argout_type,
long event_status, long event_error)

long event_type - event type to dispatch

DevArgument argout - pointer to argout to dispatch with event

DevType argout_type - argout type

long event_status - status of event to dispatch to client

long event_error - error code of event to dispatch to client (if status != DS_0K)

11.4 Implementation

User events have been implemented in TACO DSAPI v7.0. They have been tested
on Linux/x86, Linux/m68k, HP-UX and Solaris 2.5. They should work in principle
on 0S-9 but because of its flaky TCP/IP stack implementation programmers are
urged to port their device servers to one of the Unix derivatives e.g. Linux, where
they will not be plagued by sockets closing when they shouldn’t or not closing when
they should ! No port has been undertaken so far for Windows or VxWorks.

11.5 Timeouts

Events depend on detecting the server or client going down in order to work cor-
rectly. This is treated as a timeout in the client. If the client does not receive
any events during a period exceeding the asynchronous timeout value (set us-
ing dev_asynch_timeout()) it wll ping the server to see if it is still alive. If not
it will trigger the event callback with status = DS_.NOTOK and error = Dev-
Err RPCTimedout. The event will be unregistered on the client side. If the server
detects a client is not there anymore it wil silently remove it from the list of regis-
tered clients.

11.6 Examples

How best to generate events in a device server 7 The most obvious way is to create
an event thread whose job it is to poll a variable (state or value) to detect the event.
Once the event is detected the event thread calls dev_event_fire() to dispatch the
event. Here is a simple example to generate a periodic event using Posix threads :

void * events_thread(void * arg)
{

long event = 1;

long counter=0;

struct timespec t100ms;

fprintf(stderr, "\nfire_events(): starting thread %s\n",

114 CHAPTER 11. EVENTS BY A.GOTZ

(char *) arg);

for (5;)

{
dev_event_fire(ds, event,&counter,D_LONG_TYPE,DS_OK,O);
counter++;

/*

* sleep for 90 ms

*/
t100ms.tv_sec = 0;
t100ms.tv_nsec = 90000000;
nanosleep(&t100ms, NULL);

}

return NULL;
}

int event_thread_start()
{
int retcode;
pthread_t th_a, th_b;
void * retval;

#if defined(linux) || defined(solaris)
retcode = pthread_create(&th_a, NULL, fire_events, "a");
#else
retcode = pthread_create(&th_a, pthread_attr_default,
(pthread_startroutine_t)fire_events,
(pthread_addr_t)"a");

#endif /* linux || solaris */
if (retcode !'= 0) fprintf(stderr, "create a failed %d\n",
retcode) ;

The function event_thread_start() has to be called at an appropiate point in the
device server e.g. during class_initialise() or object_create().

11.7 Performance

The performance of events depends naturally on what type of system the device
server is rnning on. Tests have been caried out on Linux/x86, Linux/68k, HP-UX
and Solaris running on Pentiums, 68030s, s700s and SPARC CPUs. They all showed
similar performance with variations due to the scheduler. Firing of events uses the
one-way ONC RPC mechanism which means it is immediately copied tothe system
buffer without waiting. This means there is very little overhead introduced in the
device server. Generating events at maximum speed shows that the minimum time
between events is about 25 microseconds with an average of 500 microseconds over
a long (seconds) time scale. This is due to scheduler stopping the device server at
regular intervals (presumably to dispatch the events).

Using the example code above a number of tests were done on different platforms.
The results were all roughly the same i.e. the server could generate events at regular
time intervals of 100 millseconds wih a jitter of less than 10 microseconds. The jitter
goes up as a function of the number of clients e.g. jitter of 25 microseconds for 10
clients on Linux/m68k. Here is an example output log from a client (Linux/x86

11.8. KNOWN PROBLEMS

115

+ Pentium) which accepts the events from a device server running on a tacobox
(Linux/x86 + Pentium) and prints out their times :

counter =
counter =
counter =
counter =
counter =
counter =
counter =
counter =
counter =
counter =
counter =
counter =
counter =

3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374

b

server
server
server
server
server
server
server
server
server
server
server
server
server

time
time
time
time
time
time
time
time
time
time
time
time
time

11.8 Known problems

{924772119
924772119
924772119
{924772119
{924772119
{924772119
{924772119
{924772120
{924772120
{924772120
{924772120
{924772120
{924772120

s,342170
s,442169
s,542169
s,642169
s,742169
s,842169
s,942169
s,042173
s,142169
s,242169
s,342169
s,442169
s,542169

us}
us}
us}
us}
us}
us}
us}
us}
us}
us}
us}
us}
us}

delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta
delta

time =
time =
time =

time

time =
time =

time

time =

time

time =

time

time =

time

Known problems so far are that when the server or client die then HP-UX and
Solaris servers and clients have difficult to detect this due to the way sockets are
handled. The next release will fix this by implementing an event heartbeat which
will reactivate the event channel. Failure to do so will result in the event timing
out and the client being removed from the list of registered clients in the server.

99974 us
99999 us
100000 us
100000 us
100000 us
100000 us
100000 us
100004 us
99996 us
100000 us
100000 us
100000 us
100000 us

116 CHAPTER 11. EVENTS BY A.GOTZ

Chapter 12

The Signal Interface
by J.Meyer and J-L.Pons

12.1 Introduction

The device server signal interface is based on the use of the device server signal and
multi signal classes. They define a signal object for a value with a set of standard
properties and functionality. The implementation of three commands with standard
behaviour in the device class offers a standard interface to clients. Following this
conventions, generic monitoring applications and the history database can be easily
used, without coding, on the devices of a class.

12.2 Conventions on Signals
The signal class allows the creation of signal objects with a naming convention as:
DOMAIN/FAMILY/MEMBER/SIGNAL

The signal name is an extension to the device name used in the ESRF control
system. To create a signal object a name with four fields must be used. This
corresponds to signal naming as it is used in the history database and in general
data display applications.

e A signal represents a simple data value.
e All signals of a class must be of the same data type.
e The data type might be float values or double values.

A special problem is the relation between read and set values. To identify all signals
which can be set clearly the following naming convention must be respected. A set-
point signal name must be preceded by the identifier ”set-".

Example: SR/RF-FOC/TRA3-1/set-Voltage

A set-point signal can be modified and its actual value can be read.

In the case of a readable set-point value and a separate read value (as on most of
the power sup- plies) the read values must keep the same signal name without the
preceding identifier ”set-”.

Example: SR/RF-FOC/TRA3-1/Voltage

With this convention all signals which can be modified can be easily identified. Also
the relation between separate read and set signals can be automatically established.

117

118 CHAPTER 12. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

12.3 The Signal Properties

A set of signal properties is defined in the signal class. The properties must be
defined for a device class. They are used for signal identification and the auto-
matic configuration of monitoring and tuning applications and the history database
configuration tool.

The properties of a signal object are:

1. Name - The full signal name.

2. Label - A label for the signal value, which can be used in applications.
Unit - The unit of the signal value.

Format - The format in which the data should be displayed (printf() format).

Description - A text describing the signal.

S otoe W

Max - A maximum value. Can be used for data display or to check limits of
set values.

7. Min - A minimum value. Can be used for data display or to check limits of
set values.

8. AlHigh - Above this limit an alarm will be indicated.
9. AlLow - Under this limit an alarm will be indicated.

10. Delta - If the nominal value and the read value of the signal differ by +/-
delta during the number of seconds specified by ”Delta_t” , an alarm will be
raised.

11. Delta_t If the nominal value differs from the read value for a longer time than
Dta_t seconds, an alarm will be raised.

12. Standard Unit - A multiplier factor to convert the given signal unit into a
standard unit (V, A, W, bar ...).

12.4 The Server Side

12.4.1 The Commands to Access Signals

Four commands must be defined in a device class to access signals. One to read
an array of signal values, one to identify and to describe each signal value, one to
update changed signal properties and one to set a signal value.

DevReadSigValues

The command reads an array of signal values. The array should contain all signals
for this class. The data type for all signals of a class must be the same. Possible
data types are float values or double values. The command must always return an
array, even if only one signal value is defined.

To avoid the polling of several commands in the data collector, the state of a
device should be also treated as a signal and should be returned as the signal
"DOMAIN/FAMILY /MEMBER /State” by this command.

Command list entry:

DevReadSigValues, read_signal_values, D_VOID_TYPE, D_VAR_FLOATARR, READ_ACCESS

12.4. THE SERVER SIDE 119

Command function definition:

long read_signal_values (xxx ds, DevVoid *argin, DevVarFloat Array *argout, long *error)
Description: Returns the signal values of a device.

Arg(s) In: None

Arg(s) Out: DevVarFloatArray signal_values - Array of signal values.

long *error - Pointer to error code, in case routine fails.

DevGetSigConfig

The command reads the properties of all signals returned by DevReadSigValues.
The order of the signals must be the same for the two commands. The first value
returned by DevReadSigValues must correspond to the first set of properties re-
turned by DevReadSigConfig.

The properties of all signals of a class are returned as a string array. The first
string (element [0]) must indicate the number of properties per signal, to have the
flexibility to add new properties. The number of elements in the string array will
be:

length = number of properties * number of signals + 1

The properties of the signals must be added to the string array by using the result
of the method DevMethodReadProperties on the signal or multi signal object (see:
the user guides of the two classes).

Command list entry:

DevReadSigConfig, read_signal_config, D_VOID_TYPE, D_VAR_STRINGARR, READ_ACCESS
Command function definition:

long read_signal_config (xxx ds, DevVoid *argin, DevVarStringArray *argout, long *error)
Description: Returns the signal properties of all signals of a device.

Arg(s) In: None

Arg(s) Out: DevVarStringArray signal_values - Array of signal properties.

long *error - Pointer to error code, in case routine fails.

DevUpdateSigConfig

The command reinitialises all signal properties of all signals of a device. After
an update of the resource database calling this command reinitialises all signal
properties dynamically with their actual resource values. The goal is an interactive
resource editor with a direct update of the device configuration.

The method DevMethodSignalsReset must be used on the signal or multi signal
object (see: the user guides of the two classes)

Command list entry:

DevUpdatedSigConfig, update_signal_config, D_VOID_TYPE, D_VOID_TYPE, WRITE_ACCESS

Command function definition:

120 CHAPTER 12. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

long update_signal_config (xxx ds, DevVoid *argin, DevVoid *argout, long *error)

Description: Reinitialises all signal properties of all signals of a
device with the actual resource values.

Arg(s) In: None

Arg(s) Out: None

DevSetSigValue

Receives a new value for a set-point signal (with ”set-” identifier). Verifies the
validity of the given signal name and that the value doesn‘t exceed the specified
range for the signal by using the method DevMethodCheckLimits on the signal
or multi signal object (see: the user guides of the two classes). Applies the new
set-point.

Command list entry:

DevSetSigValue, set_signal_value, D_STRINGDOUBLE_TYPE, D_VOID_TYPE, WRITE_ACCESS
Command function definition:

long set_signal_value (xxx ds, DevStringDouble *argin, DevVoid *argout, long *error)

Description: Receives a new value for a signal. Verifies that the value
doesn‘t exceed the specified range for the signal.
Applies the new set-point.

Arg(s) In: DevStringDouble *argin - Structure containing the name of the
signal to modify as a string and the value to be applied as double.

Arg(s) Out: None

12.4.2 Coding Example using a Multi Signal Object

This example is for a device server written in ”C”. For the use in a ”C++" device
server the multi signal object must be created via the OIC interface, but can be
used with the same functionality.

To use a multi signal object it must be created and initialised in the object_initialise()
method:

#include <MDSSignalP.h>
#include <MDSSignal.h>

/*
* Create the signal objects specified for this class

*/

if (ds__create (ds->devserver.name, mDSSignalClass,
&ds->focus.msignal_obj, error) == DS_NOTOK)

{
return(DS_NOTOK) ;

}

if (ds__method_finder (ds->focus.msignal_obj, DevMethodInitialise)

12.4. THE SERVER SIDE 121

(ds->focus.msignal_obj, focusClass->devserver_class.class_name,
error) == DS_NOTOK)
{
return(DS_NOTOK) ;
}

Afterwards two commands can be implemented using the multi signal object:

Function: static long read_signal_config()

Description: Read the properties of all signals specified
for the focus power supply.

Arg(s) In: Focus ds - pointer to object
void *argin - no input arguments

Arg(s) Out: DevVarStringArray *argout - Array of signal properties
long *error - pointer to error code, in case routine fails

static long read_signal_config (Focus ds, DevVoid *argin,
DevVarStringArray *argout, long *error)

{
*error = 0;
if (ds__method_finder (ds->focus.msignal_obj,
DevMethodReadProperties)
(ds->focus.msignal_obj, argout, error) == DS_NOTOK)
{
return(DS_NOTOK) ;
X
return (DS_OK);
}
Function: static long update_signal_config()
Description: Reinitialises all specified signal properties with
their actual resource values..
Arg(s) In: Focus ds - pointer to object
void *argin - no input arguments
Arg(s) Out: void *argout - no outgoing arguments
long *error - pointer to error code, in case routine fails
static long update_signal_config (Focus ds, DevVoid *argin,
DevVoid *argout, long *error)
{

*error=0;

122 CHAPTER 12. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

if (ds__method_finder (ds->focus.msignal_obj, DevMethodSignalsReset)
(ds->focus.msignal_obj, error) == DS_NOTOK)
{
return(DS_NOTOK) ;
}
return(DS_0K) ;
}

The third command just has to return an array of values which must be ordered as
the signal properties!

Function: static long read_signal_values()

Description: Read the measurement and setpoint values
for this device.

[0] : current setpoint
[1] : voltage
[2] : current

Arg(s) In: Focus ds - pointer to object
void *argin - no input arguments
Arg(s) Out: DevVarFloatArray *argout - Array of signal values..
long *error - pointer to error code, in case routine fails

static long read_signal_values (Focus ds, DevVoid *argin,
DevVarFloatArray *argout, long *error)

{
static float values[3];
xerror = 0;
-> Read the signal values here!
argout->length = 3;
argout->sequence = &values[0];
return (DS_OK);

}

The fourth command must treat all available set-points, which are identified by
their name.

Function: static long set_signal_value()

Description: Receives a new value for a signal. Verifies that the value

12.4. THE SERVER SIDE 123

doesn‘t exceed the specified range for
the signal. Applies the new set-point.

Arg(s) In: Focus ds - pointer to object
DevStringDouble *argin - Structure containing the name
of the signal to modify as a string and
the value to be applied as double.

Arg(s) Out: void *argout - no output arguments.
long *error - pointer to error code, in case routine fails

static long set_signal_value (Focus ds, DevStringDouble *argin,
void *argout, long *error)

long limit_state;
char *sig_name;

*error = 0;

/%
* Check whether the signal name is a valid set-point signal and
* whether its values are in the specified range.

*/

if (ds__method_finder (ds->focus.msignal_obj, DevMethodCheckLimits)
(ds->focus.msignal_obj, argin, &limit_state, error)

==DS_NOTOK)
{
return(DS_NOTOK) ;
}
if (limit_state != DEVRUN)
{
¥error = DevErr_ValueOutOfBounds;
return (DS_NOTOK) ;
}
/*

* Find the set-point signal amongst all available set-points and
* apply the new set value.

*/

sig_name = strrchr (argin->name, ‘/¢);
sig_name++;

if (strcmp (sig_name, "set-Voltage") == 0)

124 CHAPTER 12. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

if (strcmp (sig_name, "set-Current") == 0)

return (DS_OK);
}

The multi signal object is also used to handle alarms on signals which change the
state of a device. The method used in the DevState command is DevMethodCheck-
Alarms and the method used in the DevStatus command is DevMethodReadAlarms.
See the Multi Signal Class Users Guide for more information.

12.5 Reading the Signal Properties without Ac-
cessing the Device

A second way to extract the signal names and properties of a device was developed.
They are read directly from the resource database without a connection to the
device. This interface is used in applications like fsigmon, devsel, hdb_config and
the hdb_filler which can read data only from the data collector without having access
to a device server running on a VME crate.

To use this functionality your client must be linked with the shared library: libdssig.sl
The functions were not integrated to the TACO API-library, because it uses inter-
nally the signal and multi signal classes. This would cross reference the API-library
with the class library. Linking problems and Makefile changes would be the result.
Available functions are:

12.5.1 dev_get_sig_config()

long dev_get_sig_config (char *device_name, DevVarStringArray *sig_config,
long *error)

Description: Extract the signal configuration for a device from
the resource database. The result is the same as
calling the command DevGetSigConfig on the device.
The returned data must not be freed. Data will be
freed with the next call to the function.

Arg(s) In: char *device_name - Name of the device.

Arg(s) Out: DevVarStringArray *sig_config - Array containing the
configuration of all signals known for this device.

long *error - pointer to error code, in case routine fails.

12.5.2 dev_get_sig _config from name()

long dev_get_sig_config_from_name (char *signal_name,
DevVarStringArray *sig_config,
long *error)

12.5. READING THE SIGNAL PROPERTIES WITHOUT ACCESSING THE DEVICE125

Description: Extract the signal configuration for one signal of
a device from the resource database. The returned
data must not be freed. Data will be freed with the
next call to the function.

Arg(s) In: char *device_name - Name of the device.
char *signal_name - Name of the signal.

Arg(s) Out: DevVarStringArray *sig_config - Array containing the
configuration of the signal for this device.

long *error - pointer to error code, in case routine fails.

12.5.3 dev_get_sig_list()

long dev_get_sig_list (char *device_name, DevVarStringArray *sig_list,
long *error)

Description: Extract all signal names defined for a device.
Arg(s) In: char *device_name - Name of the device.
Arg(s) Out: DevVarStringArray *argout - Array containing the list

of signals defined for the device.
long *error - pointer to error code, in case routine fails.

12.5.4 dev_get_sig set_list()

long dev_get_sig_set_list (char *device_name, DevVarStringArray *argout,
long *error)

Description: Extract all signal names for set-points defined for a
device. Signal names for set-points are pre-ceeded by
the by the identifier "set-".

Arg(s) In: char *device_name - Name of the device.

Arg(s) Out: DevVarStringArray *sig_list - Array containing the list
of signals for set-points defined for the device.

long *error - pointer to error code, in case routine fails.

12.5.5 dev_get_sig setread_from name()

long dev_get_sig_setread (char *signal_name,DevLongString *set_signal,
DevLongString *read_signal, long *error)

Description: Returns for a given signal of a device the corresponding
set-point signal and read-point signal names together
with their index in the signal list of the device.

The signal name entered can be either the set-point signal

126 CHAPTER 12. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

or the read-point signal name. If a set-point doesn‘t exist
for a entered signal name, a NULL pointer is returned for
the signal name and the index is initialised to "-1".

The same is true for a set-point signal which has no
separate read-signal defined.

Signal names for read-points and set-points are the same,
only the set-point signal name is preceded by the
identifier "set-".

Arg(s) In: char *device_name - Name of the device.
char *signal_name - Name of the signal.

Arg(s) Out: DevLongString *set_signal - The name and the index,
in the signal list, of the set-point signal.

DevLongString *read_signal - The name and the index,
in the signal list, of the read-point signal.

long *error - pointer to error code, in case routine fails.

12.6 The Client Side

With the described commands, signals can be displayed in a generic way on the
client side.

1. To find out the data type used by the command DevReadSigValues, the func-
tion dev_cmd_query() of the API-library can be used. Filtering for the com-
mand indicates the data type of the outgoing arguments.

2. By executing the command DevReadSigConfig the place of a signal in the
array can be determined by its name. All other properties needed for a signal
display are following the signal name in the described order (see ” The Signal
Properties” on page2).

3. DevReadSigValues returns the signal values in the same order as indicated by
DevReadSigConfig.

An example shows how DevReadSigConfig and DevReadSigValues can be used to
display signals in a device server menu. The data type in this case is known and
dev_cmd_query() is not used.

devserver device;
DevVarStringArray sig_config;
DevVarFloatArray param_array;
long nu_of_properties;
long nu_of_signals;
long i, k;
case (3)

/*

* Read the device signal values.

*/

12.6. THE CLIENT SIDE 127

0;
NULL;

param_array.length
param_array.sequence

if (dev_putget (device, DevReadSigValues, NULL, D_VOID_TYPE,

¶m_array, D_VAR_FLOATARR, &error)
{
dev_printerror_no (SEND, "DevReadSigValues", error) ;
break;
}
/%
* Read the signal properies to display the values.
*/
sig_config.length = 0;

sig_config.sequence = NULL;

if (dev_putget (device, DevGetSigConfig, NULL, D_VOID_TYPE,
&sig_config, D_VAR_STRINGARR, &error) < 0)

{
dev_printerror_no (SEND, "DevGetSigConfig", error);
break;
¥
/*
* Find the label format and unit for the signal values.
*/

nu_of_properties = atol (sig_config.sequence[0]);
nu_of_signals (sig_config.length -1) / nu_of_properties;

printf ("Device parameters:\n");

for (i=0; i<nu_of_signals; i++)

{
sprintf (format, "%24s [%2s] : %s\n",
sig_config.sequence[(i*nu_of_properties) + 2],
sig_config.sequence[(i*nu_of_properties) + 3],
sig_config.sequence[(i*nu_of_properties) + 4]);
printf (format, param_array.sequencel[i]);

/*
* Free the allocated arrays.

*/

if (dev_xdrfree (D_VAR_FLOATARR, ¶m_array, &error) < 0)
{

dev_printerror_no (SEND, "dev_xdrfree", error);

}

< 0)

128 CHAPTER 12. THE SIGNAL INTERFACE BY JMEYER AND J-L.PONS

if (dev_xdrfree (D_VAR_STRINGARR, &sig_config, &error) < 0)

{

dev_printerror_no (SEND, '"dev_xdrfree", error);
}
break;

12.7 The Signal Interface to HDB

An entry point to the HDB signal library was developed to allow signal configu-
ration in HDB with the same names as they are known in a device class. Using
dev_get_sig_config() in the HDB signal library and storing the result of the com-
mand DevReadSigValues in the data collector, all signals configured for a device
class (in the device server) are dynamically available in HDB with the same names
and descriptions.

But, today the HDB signal library still needs for dynamic loading one module for
each device class. It is just a question of copy and paste to install such a module
for a device class using the signal interface, but it implies recompilation of the
HDB signal library. Studies are going on to change this to avoid recompilation and
reinstallation of the HDB signal library in the future.

Here is an example module for the HDB signal library. This can be copied, but the
function names must be changed to the class name the new module will be used
for.

#include <API.h>
#include <siggen.h>

/*
* function prototypes

*/

long RF_FOCUS_load_type (long *error);

long RF_FOCUS_signal_list_init (char *device_name,
SigDefEntry **signal_list_ptr,
long *n_signal,
long *error);

extern long signal_list_init (char *device_name,
SigDefEntry **signal_list_ptr,
long *n_signal,
long *error);

/*

* The load type function

*/
long RF_FOCUS_load_type (long *error)
{

return (DS_OK);

}
/*

* Dynamic signal initialisation function.
* Uses signals defined on the device server level.

12.8. CONCLUSION 129

*/

long RF_FOCUS_signal_list_init (char *device_name,
SigDefEntry **signal_list_ptr,
long *n_signal,
long *error)

{
/*
* calls the general signal init function, which is
* used for all classes which implement signals on
* the device server level.
*/
if (signal_list_init (device_name, signal_ list_ptr,
n_signal, error) == DS_NOTOK)
{
return (DS_NOTOK) ;
¥
return (DS_0K);
}

12.8 Conclusion

The device server signal interface was developed for the SRRF project and was
adapted mainly to the project needs. But, I see it as a useful extension to other
device server classes. The advantage of using signals is that you can immediately
profit from generic plotting and display programs like fsigmon and xtuning. Con-
tact meyer@esrf . fr or pons@esrf.fr for more information on these programs.

130 CHAPTER 12. THE SIGNAL INTERFACE BY JJMEYER AND J-L.PONS

Chapter 13

Access Control and Security
by J. Meyer

13.1 Introduction

In TACO an object can be a physical piece of hardware, an ensemble of hardware,
a logical device or a combination of all these [1]. Objects (devices) are created,
exported and stored in a process called a device server. Every device is exported
with a unique three field name consisting of DOMAIN/FAMILY /MEMBER
and understands a set of commands which are specific for a class of objects in the
device server. Every exported object can be accessed via the Remote Procedure
Call (RPC) interface of the device server.

A device server client uses the Application Programmers Interface (API) to access
devices. The API is based on the file paradigm which consists of opening the
file, reading/writing to the file and then closing the file. In the device server
API paradigm these actions are importing, accessing and freeing the device
connection [1].

13.2 The Problem

One problem of TACO was the open access to devices from all over the network
and by all users on the network. Access restrictions were only possible by system
administration means, like restricted network access.

It was not possible to protect sensitive actions on devices because, once a device was
imported, all commands could be executed. Also no possibility was given to block
a device in a kind of single user mode to do some action which required exclusive
access for a user (e.g. tuning or calibration of hardware).

To solve the above mentioned problems, a database supported security system was
needed. Sufficient control over users and groups of users, which are allowed to access
devices in the control system, had to be given. In order not to be dependent on
machines where the control system is running, access control for networks and hosts
had to be added. A list of hierarchical rights was established to specify access modes
to devices. Combining a minimal access right with a command of a device, allows
a protection for critical actions. A single user mode was added to give clients the
possibility to be sure, that a sequence of commands on a device is not interrupted
by other clients.

The solution described has been modelled on the Amoeba distributed operating
system [3] capability lists and the UNIX access control lists. Development effort

131

132 CHAPTER 13. ACCESS CONTROL AND SECURITY BY J.MEYER

has gone into making the system as flexible as possible, with reconfigurable access
rights at runtime and fast access verification for received RPC calls in a device
server.

13.3 The Model

13.3.1 Users, Groups and Networks

To guarantee sufficient access control the following points have to be verified with
the reference data in the security database:

e If a user is explicitly specified in the database, the user name and the user
ID must be correct. This avoids problems with badly configured user ID‘s.

e If no user data is available, the actual group name and group ID must be
correct.

e If the user or his group are verified, the IP-address of the host, where the
client was started, has to be compared with the specified network access for
the user or his group.

e If neither user data nor group data is available, only the specified minimal
default access to the control system can be given. Also for no network access
specifications, a minimal default access can be granted.

Figure 1 shows an example of possible access security database specifications.

Entry Name ID Network Access
user meyer 215
[user | taurel | 21 | 160.103.10 |
160.103.5.68
[user | operator | 226 | 160.103.10 |
160.103.11
160.103.12
group comp 101 160.103
[group | machine | 102 | 160.103.10 |
160.103.11
160.103.12
default 160.103.10

Figure 13.1: The control system access table

13.3.2 Access Rights

Access rights on devices are requested by clients, when opening the connection
(importing) to a device. All predefined rights are hierarchical. A requested access
is limited by the highest possible right for a user or a group in the security database.
Possible rights are:

e NO_ACCESS : No access to the device at all.

e READ_ACCESS : Commands which only read values from the device require
the minimum access right READ_ACCESS.

13.3. THE MODEL 133

e WRITE_ACCESS : All commands which read and write values require the
minimum access right WRITE_ACCESS.

e ST WRITE_ACCESS : If this access right is requested, the device will be set
into single user mode and all commands which require WRITE_ACCESS can
be executed. At the same time other clients can execute read commands.

e SU_ACCESS : All commands which are classified as critical actions require
super user (SU_ACCESS) right to be executed. All read and write commands
can also be executed.

e ST SU_ACCESS : If this access right is requested, the device will be set into
single user mode and all commands which require SU_ACCESS can be exe-
cuted. At the same time other clients can execute read commands.

e ADMIN_ACCESS : The ADMIN_ACCESS is the highest access right. It will
set the device into the single user mode and will cancel another single user

session with lower access right. Even read commands from other clients are
blocked.

To change the access right to a device, the device connection must be freed and
afterwards reestablished with the new right.

13.3.3 Domain, Family or Member

Access rights on devices for users or groups have to be specified in the security
database. To avoid entries for every device, the TACO device naming scheme DO-
MAIN/FAMILY /MEMBER is used to enter wide range access specifications
for users or groups. Device access right entries in the security database are possible
for

e DOMAIN = a whole area of the ESRF,
e DOMAIN/FAMILY = a class of devices inside a domain,
e DOMAIN/FAMILY/MEMBER = a single device.

Figure 2 shows an example of possible device access specifications for the device,
its family or its domain.

Entry |Domaine/Family/Membef Name Acess
user SR/V-RV/C1-3 meyer SU_ACCESS
user SR/V-RV meyer SI_WRITE_ACCESS
taurel WRITE_ACCESS
fuser | SR [operator | WRITE-ACCESS |
meyer WRITE_ACCESS
group | SR/V-RV/C1-3 dserver ADMIN_ACCESS
[group | SR/V-RV | vacuum | SLSU.ACCESS |
group | SR dserver WRITE_ACCESS
operator | WRITE_ACCESS
default READ_ACCESS

Figure 13.2: The device access table

134

CHAPTER 13. ACCESS CONTROL AND SECURITY BY JMEYER

The access control system uses the following hierarchy to find the maximal access
right, for a requesting client, in the database. The device can only be imported, if
the requested access is lower or equal the maximal access right.

1

2.

3.

Verify the user entry on the device (DOMAIN/FAMILY/MEMBER).
If nothing was specified, verify the user entry of the device class (DOMAIN/FAMILY)
If nothing was specified, verify the user entry for the domain.

If nothing was specified, verify the group entry in three steps as mentioned in
the last three points.

If no maximal access right was found in the user or group entries, a default
value will be applied.

13.3.4 Verification Speed and Reliability

In contrast to the design document of the security system, the final implementation
is based more on a good integration to the system than on a maximised verification
speed. Experience with the first version has shown that reliability and adaptation
to the general system design are more important than the highest possible verifica-
tion speed. In the first version it was tried to add to a connectionless (UDP) device
server, information on client connections. This kind of connection information is
very hard to verify and impossible to guarantee as valid information. Out of this
reason, the design had to be changed. Only the information on a single user con-
nection was left in a device server. To make a single user connection reliable, it is
always a TCP connection. A dead single user client can be detected and deadlocks
avoided.

Client authentication happens only once during the import of the first device. For
all other new connections only the device access must be verified. That requires
one or two database requests. A security key is created on the client side after
the import off a device. By verifying this key all parameters for the open client
connection to a device can guaranteed unchanged. Nothing can be modified on
the connection. Parameters necessary to check the device and command access are
send to the server with every access. The parameters are checked on the server side.
Sending parameters and verifying for every server access slow down the system, but
is better adapted to a connectionless system and runs more reliable. Figure 3 and
figure 4 show how the security key is created and how parameters are transferred.

13.4 Integration into TACO

The security system is created as an optional part of TACO. At startup time a
resource of the central control system process (Network Manager) allows to sup-
press or add the security system. This flexibility is necessary because the security
system will be implied for the machine control, but it is up to every beam line
responsible to use it in the beam line control systems.

To make database access as general as possible, the resource database was reused
for security data. A specially protected table (SEC domain) was added to avoid
any overwriting of data by unauthorised persons. With this solution all available
database access functions of the control system could be reused. This might be not
the fastest solution. One can imagine to suppress one or two database accesses by
creating a new security database and security service. But a major advantage of
the current solution was the very easy maintenance of a well defined interface.

13.5. COMPLEX ACCESS HANDLING 135

Client Server
| |
. , , .
Private : API API . Private
1 1
i | Client ID, Check of import| |
' | Access right, > s !
E RPC clnt handle] permissions E
Access ' '
handle ! Y Y \
____________ H
JULIHIN i Create and store Store single !
ACC?SS right, '| | the security key user access data| !
Device 1D, . |
RPC client ! A !
handle ! Y !
1 1
30000 1y | Get device ID | Set single user !
1 | and store access [mode .
| |
1 1
Figure 13.3: The security key creation
Client Server
1 1
Private i API API . Private
1 1
1
Access i Client ID, Verify access '
handle 1 : to device and [—4
____________ ! Security key command ' Device
1 1
................ ! H server
Access right, ! Y L} . commands
Device ID, 1 . Get '
RPC client | 1,] verify the o| Access right, |
handle i | security key Device 1D, '
................ : Client ID :
1 1
1 L

Figure 13.4: Access control with the Security Key

The main part of the security system is part of the API library, added to the import,
access and free functions. Figure 5 shows the security aspects added to the API
library.

13.5 Complex Access Handling

The device server model (ref. [2]) of TACO allows two major ways for a device
server to communicate with other devices.

1. The server - server connection (figure 6)
Device servers can communicate with devices, served by any server in the
control system, via the RPC based API library functions.

2. The internal communication (figure 7)
The device server model also allows device classes to be linked into one server
process. Devices of the different classes can be exported and accessible by
clients via the network. Also a fast way of internal communication exists. It

136 CHAPTER 13. ACCESS CONTROL AND SECURITY BY J.MEYER

Client Server

Network [, Security
Manager started ? | Create and store | | Set a single

A
=
5=}
<}
=
o+

security key ™ user mode
L_access _______. 4| | }- access __ ______]
g R Verify Create and verify _| Verify device and
ecurity scurity key ”| command access
access
Database
| _free ________ 1| | L. free ________]
Destroy Free a single

Y

security key user mode

Figure 13.5: The security system integration to the API

| Client | | Client |
A Server
. Server APT
. Client APT
A Y Y
| Server | | Server

Figure 13.6: Server - server connections

uses the same import, access and free functions for internal communication
without RPCs (see DSN101). Offering the same functionality as the external
API. Proper access control, in the case both interfaces are open for device
access, can be guaranteed in a transparent way for the user.

With the two above mentioned communication schemes access control and security
are guaranteed. Only the user/group ID of a device server process must have the
necessary access rights in the security database. This protects against the starting
of critical device servers by unauthorised persons.

One problem remains and can only be solved by the device server programmer
himself. For example:

What does a single user mode mean for a device which itself accesses two underlying
devices in other servers? Do these low level devices also have to be set in single user
mode or would this disturb other clients using the same low level devices? This
kind of access control over hierarchical levels can not be given automatically. Needs
might be different from case to case and requirements are only known to the device
server programmer. The access control system can only give the tools to handle
complex access hierarchies.

13.6 Conclusion

Access control and security in a distributed control system has been presented.
Three points should be mentioned again:

(1) With the TACO device naming convention a wide range access could be imple-
mented very easy. (2) The reuse of the resource database and its services offers a

13.6. CONCLUSION 137

Client Client

Server Process

H External '
server API

Exported device

Exported device
of class X

of class Y

1 1

v Internall oo___._______
! client

v API

'

'

Figure 13.7: Internal and external API

well defined interface and easy maintenance of the security database. (3) Via the
internal and external API, hierarchically structured access levels can be controlled.
The main problem for TACO security is the OS9 operating system which, in the
currently used version, still requires super-user rights to execute RPCs.

Effort still has to go into a so-called device black box. A record should be kept of
the last n commands executed on a device. This record can be dumped or stored in
a database for offline analysis. It enables diagnostics to be carried out in the event
of device failure or crash.

13.6.1 The Current Implementation

Security for a control system is used if the Network Manger was started with the
security option:

Manager -security

As default the security system is switched off.

If a device server exited and comes back to action, all clients which had open con-
nections will be reconnected automatically with the device accesses they had before.
During the reconnection the security database is read again and changes are ap-
plied.

To achieve proper access control in a device server, the functions dev_import(),
dev_putget(), dev_put() and dev_free() must be used for internal communica-
tion as described in DSN101.

A single user connection is always a TCP connection. A died single user or admin-
istrator client will be detected on the next access to the server and the single user
lock will be freed.

It is not possible to change the RPC protocol for a connection if a single user mode
is active. When freeing a single user mode, the protocol on the connection will be
set back to the initial protocol.

Tools are now available to handle security resources easily.

e To protect the SEC table in the resource database a password can be set,
which will be requested on every update of the database.

sec_passwd database_name

No password is set on libra, to give you the chance to modify and test every-
thing.

138 CHAPTER 13. ACCESS CONTROL AND SECURITY BY J.MEYER

e To read all accesses specified for a user or a group in the security table.
sec_userinfo [-u user.name] [-g group_-name]

If no user name or group name is specified, the actual login name and group
accesses are listed.

e To list all users and groups which have a specified access right on a domain,
a family or a member.

sec_objinfo domain[/family][/member]

Attention: A list of accesses on a family will not list users or groups with the
right to access the whole domain!

13.6.2 How to get started?

To install a device server and his clients with configured access control, three steps
are necessary:

1. The minimum access right for every command of the device server has to be
added to the extended command list.

static DevCommandListEntry commands_list[] = {

{DevState, dev_read_state, D_VOID_TYPE, D_LONG_TYPE, READ_ACCESS},
{DevStatus, dev_read_status, D_VOID_TYPE, D_STRING_TYPE, READ_ACCESS},
{Dev0pen, dev_open_valve, D_VOID_TYPE, D_VOID_TYPE, WRITE_ACCESS},
{DevClose, dev_close_valve, D_VOID_TYPE, D_VOID_TYPE, WRITE_ACCESS},

{DevSetCalib, dev_set_calib, D_VAR_LONGARR, D_VOID_TYPE, SU_ACCESS},
};

Dangerous commands can be protected and only be executed by a client with
super user rights or an administrator.
Remember:

e A device is locked in single user mode. Other clients than the single user
can only access commands with the minimum access right READ_ACCESS.

e Recompiling an old device server with unchanged command list will set
the minimum access right for all commands to WRITE_ACCESS.

. As a second step, the access control and security resources for users and groups
using the device server must be set up.

#

default access right, if no user or group entry can be

found.

#

SYS/MINIMAL/ACC_RIGHT/default: READ_ACCESS, 160.103.5, \
160.103.2.132

#

user resources for the SY domain

#

SYS/USER/ACC_RIGHT/sy: meyer, READ_ACCESS, \

13.6. CONCLUSION 139

taurel, WRITE_ACCESS
#
user resources for device families in the SY domain
#
SYS/USER/ACC_RIGHT/sy|v-rv: meyer, SU_ACCESS, \
0s9, WRITE_ACCESS
#
user resources for devices in the SY domain
#
SYS/USER/ACC_RIGHT/sy|v-rv|s9: meyer, ADMIN_ACCESS
SYS/USER/ACC_RIGHT/sy|v-rv|s2: meyer, ADMIN_ACCESS
#
HHEE
#
#
group resources for the SY domain
#
SYS/GROUP/ACC_RIGHT/sy: dserver, WRITE_ACCESS, \
0s9, READ_ACCESS
#
group resources for device families in the SY domain
#
SYS/GROUP/ACC_RIGHT/sy|v-rv: vacuum, SU_ACCESS
#
group resources for devices in the SY domain
#
SYS/GROUP/ACC_RIGHT/sy|v-rv|sl: dserver, ADMIN_ACCESS
#
HHEEE S
#
user identification information
#
SYS/USER/IDENT/meyer: 215, 160.103.5.54, \
160.103.2.132
SYS/USER/IDENT/taurel: 261, 160.103.2, \
160.103.5.68
#
group identification information
#
SYS/GROUP/IDENT/dserver: 101, 160.103
SYS/GROUP/IDENT/vacuum: 310, 160.103.4.29
SYS/GROUP/IDENT/o0s9: 0, 160.103.4.218
#

The resources must be stored in the SEC table of the resource database. The
SEC table on libra is not protected. Everybody can try and set up some
resources. To avoid the total chaos when redefining the default access or some
global access on a whole domain, please put your resource files in the directory:

140

CHAPTER 13. ACCESS CONTROL AND SECURITY BY JMEYER

libra: /users/d/dserver/dbase/res/SEC

Use the database tools find out the actual database contents and why an
access was denied.

Specifying access control and security resources for OS9 clients, use as pre-
defined user and group name os9 with the uid = 0 and the gid = 0. Other
names are not possible, because any OS9 user must have the uid = 0 and
super user rights on a crate to run a device server. The name was changed
from root to 0s9 to avoid conflicts with the UNIX user root.

The client has to request how he wants to access a device, when importing
the device.

#include DevSec.h

char *dev_name = "SY/V-RV/S1";
long readwrite = WRITE_ACCESS;
devserver PVv;
long error = 0;
/*
* import the device
*/
if (dev_import (dev_name, readwrite, &pv, &error) == DS_NOTOK)
{
return (DS_NOTOK) ;
}

For Example, the requested WRITE_ACCESS was verified in the security
database and granted. The client can execute all commands on the device
which are specifyed with READ_ACCESS or WRITE_ACCESS in the com-
mand list of the device server. A command specified with SU_ACCESS cannot
be executed.

Remember:

e The access rights S WRITE_ACCESS and SI_.SU_ACCESS will set the
device into single user mode.

e Trying to import a device with S WRITE_ACCESS or SI.SU_ACCESS
if another single user is already logged in, will return an error.

e Importing a device with ADMIN_ACCESS if another single user is al-
ready logged in, will cancel the old single user session and set the device
into administration mode.

e Importing a device with any other access right will work, but only com-
mands which are specified in the command list for READ_ACCESS can
be executed. All other commands are locked for the time the single user
is logged in.

e In DevSec.h a list is defined, combining the defined access rights and
the rights as a string. This can be used to handle interactive input of
access rights.

typedef struct _DevSecListEntry {
char *access_name;

13.6. CONCLUSION 141

long access_right;
} DevSecListEntry;

static DevSecListEntry DevSec_List[] = {

{"NO_ACCESS", NO_ACCESS},
{"READ_ACCESS", READ_ACCESS},
{"WRITE_ACCESS", WRITE_ACCESS},
{"SI_WRITE_ACCESS", SI_WRITE_ACCESS},
{"SU_ACCESS", SU_ACCESS},
{"SI_SU_ACCESS", SI_SU_ACCESS},
{"ADMIN_ACCESS", ADMIN_ACCESS},
};
#define SEC_LIST_LENGTH (sizeof (DevSec_List)/sizeof (DevSecListEntry))

13.6.3 Pending Problems
Here is a list of pending problems, which will be solved in the coming releases.

e The search in the command list of a device server, for the minimum access
right of a command and the command function, is not yet optimised. The
command list is searched twice, because the command handler interface could
not be changed for compatibility reasons.

142 CHAPTER 13. ACCESS CONTROL AND SECURITY BY J.MEYER

Chapter 14

Standard Makefiles using
GNU make (gmake)
by A.Gotz

14.1 Introduction

The TACO device servers have until recently used conditional Makefiles which re-
quired processing by a program based on a mixture of lex and yacc and cpp before
calling make. Although this method was well-adapted to writing Makefiles which
supported multiple platforms it was non-standard and always posed a problem when
moving to a new platform because it often involved porting lex and yacc as well.
During the port of TACO to Linux it was decided to move to a more standard
method for conditional Makefiles and adopt the GNU make tool. GNU make (some-
times called gmake) offers a wide range of facilities including conditional statements,
it has been ported to a wide variety of platforms and is well-documented.

This chapter describes the standard way to write GNU Makefiles for building TACO
source code in general and device servers in particular.

14.2 Philosophy

The philosophy adopted for TACO Makefiles is to have one Makefile per project
which supports multiple platforms as opposed to one Makefile per platform per
project.

Once this philisophy is accepted there is still the choice to be made between a
so-called master Makefile from which platform dependant Makefiles can be gen-
erated (using a tool like imake) or a single Makefile with conditional statements
(as supported by GNU make for example) for handling platform dependancies at
make time. The latter approach is the one adopted for TACO and described in this
chapter.

14.3 GNU Make Commands

GNU make extends the standard Unix make with a number of commands. The
most important of these are :

1. ifdef wariable-name [else] endif - conditional statement which can be
used to detect the presence of variable to determine which branch of the

143

144CHAPTER 14. STANDARD MAKEFILES USING GNU MAKE (GMAKE)BY A.GOTZ

if statement will be executed. TACO uses the conditional statement to dis-
tinguish between different platforms e.g.

ifdef linux
CC = gcc
endif

2. ifndef wariable-name [else] endif - conditional statement which can be
used to detect the absence of a variable

3. ifeq (argl,arg2) [else] endif - test if argl and arg2 are identical (argl
and arg2 are variable references)

4. ifneq (argl,arg2) [else] endif - test if arg! and arg2 are different (argl
and arg2 are variable references)

In addition there are a host of string substition and analysis functions e.g. subst,
strip, findstring, filter, sort, as well as built-in expansion functions e.g.
dir, suffix, basename, join, wildcard which can be used to define arg! and
arg2. Refer to chapter 8 of the manual.

14.4 Standard Symbols

The following standard symbols should be used to identify the presence of a platform

1. unix - Unix like platform (HPUX, Solaris, SUN, Linux, LynxOS)
2. _unix__ - Unix like platform (HPUX, Solaris, SUN, Linux, LynxOS)

_hpux - HPUX running on any architecture

- w

_-hpux9000s700 - HPUX running on PA-RISC1.1

o

_-hp9000s700 - HPUX running on PA-RISC1.1
_solaris - Solaris running on SPARC
__solaris__ - Solaris running on SPARC

linux - Linux running on Intel 80x86

© » N o

lynxos - LynxOS running on Motorala 68040
10. _UCC - (new) Ultra C/C++ compiler for OS9
11. sun - SunOS running on SPARC

12. 0SK - (old) Unibridge compiler for OS9

14.5 Standard Targets

Each Makefile must have the following standard targets (generic scripts depend on
them existing) :

1. all - make all binary targets (should be first target in Makefile so that it is
taken as default)

14.6. SCRIPTS 145

2. icode - make icode versions of object files for Ultra C++/C

3. install - copy binaries to a common directory and update object files in
library (if one exists)

=~

clean - clean up so that a call to make will regenerate binaries
clobber - remove all binaries and make clean
lock - check out all source files (under RCS control)with lock

co - check out all source files (under RCS control) without lock

® N o

ci - check in all source files (under RCS control) with lock message indicating
why they are being checked in (LOCKMSG="my message”)

14.6 Scripts

To make life easier for TACO programmers a set of one-liner scripts have been
defined for each platform which call gmake with the appropriate variables defined :

1. hpuxmake - calls gmake with wniz=1 __uniz__=1 __hpuz=1 __hp9000s700=1
__hpuz9000s700=1

2. solmake - calls gmake with __uniz__=1 uniz=1 __solaris__=1 _solaris=1
3. ultracmake - calls gmake with _UCC=1

4. linuxmake - call gmake with linuz=1 uniz=1 __uniz__=1

5. sunmake - calls gmake with __uniz__=1 uniz=1 sun=1

These scripts can be found in /users/d/dserver/make/bin on the file server(s).
gmake is also available as binary for all supported platforms and can be found in
/users/d/dserver/make/bin/$0S where $OS stands for the operating system e.g.
s700, solaris, sund (gmake is the standard make on Linux).

For those sites running TACO who support only one platforms it would be advisable
to simple define the appropriate variables for that platform in the Makefile and then
call gmake without any arguments.

14.7 Example Makefile

Here is a full example of a typical Makefile to make device servers using GNU make
(cf. classes/template/simple/src/Makefile):

#

RcsID = " $Header: /libra/users/d/dserver/doc/notes/DSN122/RCS/DSN122.tex,v 1.1 1997/01/15
#

ok ok ok ok ok ok sk sk sk ok o ok ok ok sk sk ok ok ok ok o ok ok ok sk sk sk sk ok ko o ok ok ok sk ok sk sk ok ok ok ok o ok ok ok ok sk sk sk ok ok o o ok ok ok ok ok kK ok ok ok
#

File: Makefile

#

Project: <PROJECT>

#

Description: GNU Makefile for Template device server

#

Author(s): <AUTHOR>

146CHAPTER 14. STANDARD MAKEFILES USING GNU MAKE (GMAKE)BY A.GOTZ

#

Original: <DATE>

#

$Log: DSN122.tex,v $

Revision 1.1 1997/01/15 06:18:54 goetz

Initial revision

#

#

Copyright (c) 1996 by European Synchrotron Radiation Facility,

Grenoble, France

#

ok ok ok s oo o ke ok ok s o ok ks ok ks o e ok ks e ok sk o ok sk s o ke sk s o e ks s e e sk s o o sk s o e ok sk o ok
GNU Makefile Generated by the Automatic Class Generation Tool, <REVISION>
<GENERATIONDATE>.

#

This Makefile works with the GNU make (sometimes called gmake)
It makes use of the GNU make conditional statements to support
multiple platforms. To use this makefile for a particular platform
call GNU make with the appropriate symbol for that platform

defined e.g. "gmake __hp9000s700=1 unix=1 all". The following symbols
are used to identify the following platforms :

#

__hp9000s700 = HPUX 9000 series 700

_solaris = Solaris

sun = Sun0S

_uccC = 0S9 Fastrak Ultra-C Compiler

unix = various unix flavours (Solaris, HPUX, Lynx, Linux)
lynx = Lynx0S

Linux = Linux

#

__
#

The variables DSHOME is passed to the Makefile

as input argument or via the environment.

#

For UltraC use the settings for the environment variables:

MwOS = /usr/local/MWOS

PATH = $PATH: $MWOS/UNIX/bin/hp97k

CDEF = $MW0S/0S9/SRC/DEFS

CDEFESRF = /usr/local/os9/dd/DEFS

CLIB = $MW0S/0S9/LIB

CLIBESRF = /usr/local/os9/dd/LIB

#

__
#

ifdef _UCC

LIB_HOME = $(DSHOME) /1ib/0s9/ucc

0BJS_HOME = ¢$(DSHOME) /1ib/os9/ucc/objs

INSTALL_HOME = $(DSHOME)/bin/os9/ucc

endif

ifdef lynx

LIB_HOME = $(DSHOME)/1ib/lynxos

14.7. EXAMPLE MAKEFILE 147

INSTALL_HOME = $(DSHOME)/bin/lynxos

endif

ifdef __hp9000s700

LIB_HOME = $(DSHOME) /1ib/s700
INSTALL_HOME = $(DSHOME)/bin/s700
endif

ifdef sun

LIB_HOME = $(DSHOME) /1ib/sun4
INSTALL_HOME = ¢$(DSHOME)/bin/sun4
endif

ifdef _solaris
LIB_HOME = $(DSHOME)/lib/solaris
INSTALL_HOME $ (DSHOME) /bin/solaris

endif
ifdef linux
LIB_HOME = $(DSHOME)/1ib/linux
INSTALL_HOME = $(DSHOME)/bin/linux
endif

All include file and standard library pathes
#
make sure to get always the new include files
under ../include
#
INCLDIRS = -I ../include \
-I $(DSHOME)/include \
-I $(DSHOME)/include/private

All necessary compiler flags for UNIX and 0S9
#
ifdef _UCC
The C Compiler for 0S9
CC = /usr/local/MW0S/UNIX/bin/hp97k/xcc
Libraries
LIBDIRS = -L $(LIB_HOME) -L $(CLIB)
LFLAGS = $ (LIBDIRS) \
-1 dsclass \
-1 dsapi \
-1 dsxdr \
-1 dbapi \
-1 dcapi \
-1 rpclib.1 \

-1 netdb_small.l \
-1 socklib.1l \

-1 sys_clib.1l \

-1 unix.l

ICODE_LFLAGS = $(LIBDIRS) \

148CHAPTER 14. STANDARD MAKEFILES USING GNU MAKE (GMAKE)BY A.GOTZ

-Wi,-1=$(LIB_HOME)/libdsapi.il \
-Wi,-1=$(LIB_HOME)/libdsxdr.il \
-Wi,-1=$(LIB_HOME)/libdbapi.il \
-Wi,-1=$(LIB_HOME)/libdcapi.il \
-1 dsapi \

-1 rpclib.1 \

-1 netdb.1 \

-1 socklib.1l \

-1 sys_clib.1l

Compiler Flags with ANSI standart for 0S9
CFLAGS = -mode=c89 -i -to osk -tp 020 $(INCLDIRS)
ICODE_CFLAGS = -mode=c89 -i -j -0 7 -to osk —-tp 020 $(INCLDIRS)
NAME = -o $e

endif

ifdef unix

The C Compilers for UNIX
ifdef sun

CC = /usr/lang/acc

endif

ifdef _solaris

CcC = /opt/SUNWspro/SC4.0/bin/cc
endif

ifdef lynx

CcC = gcc

endif

ifdef __hpux

cc = /bin/cc

endif

ifdef linux

cC = gcc

endif

Libraries

LIBDIRS = -L $(LIB_HOME)

ifdef _solaris

LFLAGS = $(LIBDIRS) -ldsclass -ldsapi -ldbapi -1ldsxdr -ldcapi -1lnsl -lsocket
else

LFLAGS = $(LIBDIRS) -ldsclass -ldsapi -ldbapi -ldsxdr -ldcapi -1lm

endif

NAME = -0
endif #unix

Compiler flags with ANSI standart for UNIX
ifdef __hpux

CFLAGS = —-Aa -D_HPUX_SOURCE $(INCLDIRS)

endif

ifdef sun

CFLAGS = -Aa $(INCLDIRS)

endif

ifdef _solaris

CFLAGS = -Xa $(INCLDIRS)

14.7. EXAMPLE MAKEFILE 149

endif

ifdef lynx

CFLAGS = -ansi -Dlynx -Dunix -X $(INCLDIRS)
endif

ifdef linux

CFLAGS = —ansi -Dlinux -Dunix $(INCLDIRS)
endif

RCS options to lock and check out a version.
Or to check in a new version.

#

RCS lock optiomns

RCSLOCK = co -1 -r$(VERSION)

RCS check out options

RCSCO = co -r$(VERSION)

RCS check in options

RCSCI = ci -u -f -s"Rel" -r$(VERSION) -m"$(LOCKMSG)"

Class library

The object file representing the class has
to be added to the class library.

#

CLASS_LIB libdsclass.a

CLASS_OBJS = Template.o

#

All Files needed for the Server and the client
#
all include files
INCL = TemplateP.h \
Template.h
source files
SRC = Template.c \
startup.c \
ps_menu.c
object files
SVC_0BJS = Template.o \
startup.o
SVC_ICODE = Template.ic \
startup.ic
CLN_0OBJS = ps_menu.o
#f-————_———————————————————————————
What has to be made
#

Names of executables in the home directory

150CHAPTER 14. STANDARD MAKEFILES USING GNU MAKE (GMAKE)BY A.GOTZ

SERVER
CLIENT

#

#

SVC_INST
CLN_INST
INCL_INST
INCLP_INST

Templateds
template_menu

Names of executables

and include files in the installation directories
$ (SERVER)

$ (CLIENT)

Template.h

TemplateP.h

build server and client

#

ifdef _UCC
#

.SUFFIXES: .i

.c.ic:

all:

$ (SERVER) :

$ (CLIENT) :

icode:

endif

ifdef unix
all:

$ (SERVER) :
$(CLIENT) :
endif

#

#
#

$(CLASS_LIB):

ifdef _UCC
#

Rule for making 0S-9 relocatable files

.0 .C

$(CC) $(CFLAGS) -efe $<

$(CC) $(CFLAGS) -c $<

$ (SERVER) $(CLIENT)

$(SVC_0BJS)
$(CC) $(CFLAGS) $(NAME) $(SVC_0BJS) $(LFLAGS)

$(CLN_0OBJS)
$(CC) $(CFLAGS) $(NAME) $(CLN_0BJS) $(LFLAGS)

$ (SVC_ICODE)

echo Linking with icode libraries!
$(CC) $(ICODE_CFLAGS) -o $(SERVER) $(SVC_ICODE) $(ICODE_LFLAGS)

$ (SERVER) $(CLIENT)
$(SVC_0BJS)
$(CC) $(CFLAGS) $(NAME) $@ $(SVC_0BJS) $(LFLAGS)

$(CLN_0BJS)
$(CC) $(CFLAGS) $(NAME) $@ $(CLN_0OBJS) $(LFLAGS)

Add object file representing the class
to the class library.

$(CLASS_0OBJS)

For os9 all object files are kept are

14.7. EXAMPLE MAKEFILE 151

kept in a special directory, because
the library has to be built by a cat
of all object files.

H B H

cp $(CLASS_0BJS) $(0BJS_HOME)
libgen -c $(0BJS_HOME)/?*.0 -o=$(0BJS_HOME)/$(CLASS_LIB)
cp $(0BJS_HOME)/$(CLASS_LIB) $(LIB_HOME)
rm -rf $(0BJS_HOME)/$(CLASS_LIB)
endif
ifdef unix
ar rv $(LIB_HOME)/$(CLASS_LIB) $(CLASS_O0BJS)

endif
#
install executables
#
ifdef _UCC
install: $ (SERVER) $(CLIENT) $(CLASS_LIB)
cp $(SERVER) $(INSTALL_HOME)/$(SVC_INST)
cp $(CLIENT) $(INSTALL_HOME)/$(CLN_INST)
endif
ifdef unix
install: $ (SERVER) $(CLIENT)
cp $(SERVER) $(INSTALL_HOME)/$(SVC_INST)
cp $(CLIENT) $(INSTALL_HOME)/$(CLN_INST)
endif
#
install include files
#
rm -f $(DSHOME) /include/$ (INCL_INST)
cp ../include/$ (INCL_INST) $(DSHOME)/include
chmod 664 $(DSHOME)/include/$(INCL_INST)
rm -f $(DSHOME)/include/private/$(INCLP_INST)
cp ../include/$ (INCLP_INST) $(DSHOME)/include/private
chmod 664 $(DSHOME)/include/private/$(INCLP_INST)
clean:
-rm -f $(SVC_0BJS)
-rm -f $(CLN_0OBJS)
-rm -f $(SVC_ICODE)
-rm -f *.i
clobber: clean
-rm -f $(SERVER)
-rm -f $(CLIENT)
lock:

$ (RCSLOCK) $(SRC)
cd ../include; $(RCSLOCK) $(INCL); cd ../src

152CHAPTER 14. STANDARD MAKEFILES USING GNU MAKE (GMAKE)BY A.GOTZ

co:
$(RCSCD) $(SRC)
cd ../include; $(RCSCO) $(INCL); cd ../src

ci:

$(RCSCI) $(SRC)
cd ../include; $(RCSCI) $(INCL); cd ../src

14.8 Further Reading

1. GNU Make by Richard M. Stallman and Roland McGrath

Chapter 15

Basic steps to install and
configure a device server

by A.Gotz

1. Write your new class (e.g. NewClass).
2. Write the startup for the new class (start.C).
3. Compile and link the device server (e.g. Newds).

4. Create a resource file containing a list of devices to be created for a copy
of the device server.! The resource file must contain at least one line which
consists of the device server name followed by the keyword device colon and
at least one device for a valid domain (e.g. TL1, SY, TL2, SR, ID, EXP at
the ESRF). An example for the New class would be :

newds/test/device: id/new/1

The resource file can contain other resources which are device specific. The re-
source file must be stored in the resource base directory (e.g. /users/d/dserver/dbase/res
on libra for the test control system used at the ESRF).

5. If your device server defines new commands and/or errors (cf. DSN/096) then
define a class base number (e.g. DevNewBase) and define the commands in
the resource file e.g.

#

test device for the Newds device server
#

newds/test/device: id/new/1

#

private commands

#

cmds/4/6/1: "DevNewCmd1"

This is all explained in the section on ” Adding Private Commands”.

Leach copy of a device server has its own so-called “personal name” which is used to identify,
the full server name is therefore the name of the executable followed by the personal name e.g.
Newds/test

153

154CHAPTER 15. BASIC STEPS TO INSTALL AND CONFIGURE A DEVICE SERVERBY A.GOTZ

6. Update the resource file in the static database using the command db_update
file (where file is the resource file name w.r.t to the resource base directory)
or greta (the graphical resource editor).

7. Start the device server with the personal name specified in the resource file
and the option -m (e.g. Newds test -m), make sure the environment variable
$NETHOST is pointing to a valid control system nethost (e.g. libra at the
ESRF).

Chapter 16

A

tool to test a TACO

control system
by E.Taurel

16.1 Introduction

testes is a TACO tool built to test a control system. It is able to test from a single
device server to a complete TACO control system. Testing a device server is done
by sending a network request to it and waiting for the answer. It does not test
the device served by the device server but only the device server ability to answer
to netwok request. The tool takes its input directly from the TACO device server
database and must run on the same computer than the database. It is available for
HP-UX, SunOS and Solaris.

16.2 Usage

Five option are available :

-k to test a TACO control system kernel servers. The kernel servers are :

— The manager
— The database server

— The data collector server(s) if the control system is running with a data
collector

-d to test a device server. The full device server name must be specified
(device server executable name/personal name)

-h to test all the device server running on a specific host. The host name
must be specified.

-a to test a complete control system. In this case, the tool will test the kernel
servers and all the device servers running on all the hosts used in the control
system.

The last option -v is a verbose option. This option has a meaning only with
the -k,-h and -a options. In verbose mode, the tool displays the answer of all
the tested device server. In non verbose mode, only the faulty device server
are reported to the user.

155

156 CHAPTER 16. A TOOL TO TEST A TACO CONTROL SYSTEMBY E.TAUREL

If the option -a is used, the tool will inform you of :
e All the missing device servers which have not been started.
e All the started but dead device servers.

A manual page is available under UNIX.

16.3 Usage example

16.4 Testing a device server

Test of a running device server called PneumValves started with the personal name
sr_c02.

$testcs -d pneumvalves/sr_c02

DS pneumvalves/sr_c02 : UDP version 1 ==> 0K
DS pneumvalves/sr_c02 : TCP version 1 ==> 0K
DS pneumvalves/sr_c02 : UDP version 4 ==> 0K
DS pneumvalves/sr_c02 : TCP version 4 ==> 0K

$

If the device server is badly killed (with a kill -9 under UNIX or if the device server
has crashed).

$testcs -d pneumvalves/sr_c02

DS pneumvalves/sr_c02 : UDP version 1 ==> NOK, leaving test
DS process PID found in database : 17185

$

If the device server is nicely killed.

$testcs -d pneumvalves/sr_c02
DS pneumvalves/sr_c02 defined in database on host libra but not started

$

If the device server is unregistered from the database (dbset_servunreg or dbm_servunreg
command) or has never been started.

$testcs -d pneumvalves/sr_c02
Device server is not running (PN in db = 0)

$

If the device server is deleted from the database (dbset_servdel or dbm_servdel
command

$testcs -d pneumvalves/sr_c02
Device server not defined in database

$

16.5 Testing control system kernel servers

Example of the testcs answer started with option -k and -v on the ESRF machine
control system

16.6. TESTING ALL THE DEVICE SERVER RUNNING ON A HOST 157

$ testcs -k -v
Manager : UDP version 1 ==> 0K
Manager : UDP version 4 ==> 0K

Database server : UDP version 1 ==> 0K
Database server : UDP version 2 ==> 0K
Database server : UDP version 3 ==> 0K
Database server : TCP version 1 ==> 0K
Database server : TCP version 2 ==> 0K
Database server : TCP version 3 ==> 0K
Data collector read server 1 on gemini : TCP version 1 ==> 0K
Data collector read server 1 on gemini : UDP version 1 ==> 0K
Data collector read server 2 on gemini : TCP version 1 ==> 0K
Data collector read server 2 on gemini : UDP version 1 ==> 0K
Data collector read server 3 on gemini : TCP version 1 ==> 0K
Data collector read server 3 on gemini : UDP version 1 ==> (0K
Data collector read server 4 on gemini : TCP version 1 ==> (0K
Data collector read server 4 on gemini : UDP version 1 ==> (K
Data collector read server 5 on gemini : TCP version 1 ==> 0K
Data collector read server 5 on gemini : UDP version 1 ==> 0K

Data collector write server 1 on gemini : TCP version 1 ==> 0K
Data collector write server 1 on gemini : UDP version 1 ==> 0K
Data collector write server 2 on gemini : TCP version 1 ==> 0K
Data collector write server 2 on gemini : UDP version 1 ==> 0K
Data collector write server 3 on gemini : TCP version 1 ==> 0K
Data collector write server 3 on gemini : UDP version 1 ==> 0K
Data collector write server 4 on gemini : TCP version 1 ==> 0K
Data collector write server 4 on gemini : UDP version 1 ==> 0K
Data collector read server 1 on aries : TCP version 1 ==> (K
Data collector read server 1 on aries : UDP version 1 ==> 0K
Data collector read server 2 on aries : TCP version 1 ==> 0K
Data collector read server 2 on aries : UDP version 1 ==> (K
Data collector read server 3 on aries : TCP version 1 ==> (K
Data collector read server 3 on aries : UDP version 1 ==> (K
Data collector read server 4 on aries : TCP version 1 ==> 0K
Data collector read server 4 on aries : UDP version 1 ==> OK
Data collector read server 5 on aries : TCP version 1 ==> OK
Data collector read server 5 on aries : UDP version 1 ==> (K
Data collector write server 1 on aries : TCP version 1 ==> 0K
Data collector write server 1 on aries : UDP version 1 ==> 0K
Data collector write server 2 on aries : TCP version 1 ==> 0K
Data collector write server 2 on aries : UDP version 1 ==> 0K
Data collector write server 3 on aries : TCP version 1 ==> 0K
Data collector write server 3 on aries : UDP version 1 ==> 0K
Data collector write server 4 on aries : TCP version 1 ==> (0K
Data collector write server 4 on aries : UDP version 1 ==> 0K

$

16.6 Testing all the device server running on a
host

This is a copy of the output of testcs started with the -h and -v option for one of
the ESRF machine control system VME

158CHAPTER 16. A TOOL TO TEST A TACO CONTROL SYSTEMBY E.TAUREL

$ testcs -h vme006 -v

Test host : vme006

DS plc/sy_s678 and pneumvalves/sy_s678 : UDP version 1 ==> 0K
DS plc/sy_s678 and pneumvalves/sy_s678 : TCP version 1 ==> 0K
DS plc/sy_s678 and pneumvalves/sy_s678 : UDP version 4 ==> 0K
DS plc/sy_s678 and pneumvalves/sy_s678 : TCP version 4 ==> 0K
DS r1pc/sy_s678 and ripc- channel/sy 8678 : UDP version 1 ==> (0K
DS ripc/sy_s678 and ripc- channel/sy s678 : TCP version 1 ==> 0K
DS arun/sy_s678 and pg_arun/sy_s678 : UDP version 1 ==> 0K

DS arun/sy_s678 and pg_arun/sy_s678 : TCP version 1 ==> 0K

DS arun/sy_s678 and pg_arun/sy_s678 : UDP version 4 ==> 0K

DS arun/sy_s678 and pg_arun/sy_s678 : TCP version 4 ==> 0K

DS magvaccoolingilds/sy and cellmagil/sy : UDP version 1 ==> 0K
DS magvaccoolingilds/sy and cellmagil/sy : TCP version 1 ==> 0K
DS thctrl/sy and srthc/sy : UDP version 1 ==> 0K

DS thctrl/sy and srthc/sy : TCP version 1 ==> 0K

DS thctrl/sy and srthc/sy : UDP version 4 ==> 0K

DS thctrl/sy and srthc/sy : TCP version 4 ==> 0K

$

On this output, you can remark that device server with several embedded classes
are tested as one server (plc/sy_s678 and pneumvalves/sy_s678 are part of the same
device server process). It is also possible to detect old device server which are
registered in the RPC layers with version 1 only (ripc/sy-s678 and magvaccoolingilds
servers).

16.7 Testing a complete control system

The following is a result of testcs started on a ESRF beam line control system with
the -a option

$testcs -a

Testing control system kernel components

Getting information from the whole control system

On large control system, this may needs time !

Getting information for : id101

Getting information for : id102

Getting information for : id106

Getting information for : tina

Control system with 34 server process(s) distributed on 4 host(s)
Testing device server(s) running on id101

Testing device server(s) running on id102

DS gpib/dummy and mcamb/id10 : UDP versionl ==> NOK !!!!t!

DS process PID found in database : 66

DS wxbpm/mcd defined in database on host id102 but not started
Testing device server(s) running on id106

Testing device server(s) running on tina

DS ud_daemon/ud_atte defined in database on host tina but not started

$

This exmaple does not use the verbose mode of testcs. From the output, you can
conclude that

e All the kernel conponents are running well (manager, database server and
data collector).

16.7. TESTING A COMPLETE CONTROL SYSTEM 159

e The control system is distributed on 4 hosts and uses 34 device servers.
e The deice server gpib/dummy is not running

e The device servers wxbpm/mecd and ud_daemon/ud_atte have not been started.

160CHAPTER 16. A TOOL TO TEST A TACO CONTROL SYSTEMBY E. TAUREL

Chapter 17

Adding Private Commands,
Errors and XDR Data Types
by J.Meyer and A.Gotz

17.1 Introduction

For more flexible and memory saving architecture, commands, errors and XDR data
types are treated as follows :

1. error strings can be generated dynamically by the server and returned to the
client as part of the dev_putget() call.

2. in addition strings can be stored as resources in the resource database.

3. a split up of the command and error numbers into several fields allows private
specifications for a device server.

4. there is a small kernel of general XDR data types which has to be linked to
every device server or client. All other data types are declared private and
must be explicitly loaded in a server or client process.

17.2 Dynamic Errors

TACO V8.18 supports dynamic error strings. This means error strings can be gener-
ated dynamically by the server and returned to the client using the dev_error_push()
call. This allows for much more flexible error treatment e.g. errors can be generated
in situ with very clear dynamically generated text indicating the exact error. Error
messages can be stacked on the server side to indicate the device or class where the
error was first detected. NOTE: when using dynamic error strings the error code
is ignored when retrieving the error string (obviously) but the client can still use it
to detect the type of error. For more details see the DSAPI section of this manual.
Example of using dev_error_push() :

long MyClass::my_cmd(MyClass my_device, void *vargin, void *vargout, long *error);
{

static char error_str[256];

long argin;

argin = *(long*)vargin;

161

162CHAPTER 17. ADDING PRIVATE COMMANDS, ERRORS AND XDR DATA TYPESBY J.MEYER /

if (argin > my_device.maximum)

{

sprintf ("MyClass::my_cmd(): argin = %d exceeds maximum value allowed (max=%d)\n"
argin, my_device.maximum) ;

dev_error_push(error_str) ;

*¥error = DevErr_CommandFailed;

return (DS_NOTOK) ;

}

17.3 Error Numbers

The error number, defined as a long word, is split into four different fields:

| 31 26 | 25 18 | 17 121 11 0|

|- Error Number
- Error category
- Device Server Identification

— Team Number

e Team Number:
A uniq number which is assigned to each developer team in the include file
DserverTeams.h. These numbers are managed by the machine control team.

#ifndef _DserverTeams_h
##define _DserverTeams_h

/*
* Definitions to code and decode the error and command numbers.
x/

#define DS_TEAM_SHIFT 26

#define DS_IDENT_SHIFT 18

#define DS_TEAM_MASK 0x3f

#define DS_IDENT_MASK Oxff

[**xkkxkkkxkkkkk Device server development Teams definitions sokkkskokkskokkskskk/

#define CntrlTeamNumber (1 << DS_TEAM_SHIFT) /* CS - Machine Control */

#define DasTeamNumber (2 << DS_TEAM_SHIFT) /* CS - Data Acquisition */
#define ProgTeamNumber (3 << DS_TEAM_SHIFT) /* Experiments -Programming */
#define CrgTeamNumber (4 << DS_TEAM_SHIFT) /* External - CRG */

#define BlcTeamNumber (5 << DS_TEAM_SHIFT) /* CS - Beam Line Control */

17.4. COMMAND NUMBERS 163

#endif /* _DserverTeams_h */

e Device Server Identification:
A uniq number to identify a device server class and its private definitions.
These numbers will be managed and assigned inside the programming teams.
Example (DasDsNumbers.h):

#ifndef _DasDsNumbers_h
#define _DasDsNumbers_h

#include <DserverTeams.h>

/* ESRF-VDL */

#define DevVdlBase DasTeamNumber + (1 << DS_IDENT_SHIFT)
/* ELTEC-IC40 */

#define DevIpcBase DasTeamNumber + (2 << DS_IDENT_SHIFT)
/* NOVELEC-MCCE */

#define DevMcceBase DasTeamNumber + (3 << DS_IDENT_SHIFT)
/* ESRF - SKELETON */

#define DevSkelBase DasTeamNumber + (4 << DS_IDENT_SHIFT)
/* LECROY 1151 - COUNTER*/

#define DevCntBase DasTeamNumber + (5 << DS_IDENT_SHIFT)
/* ESRF - TDC CI022 */

#define DevTdcBase DasTeamNumber + (6 << DS_IDENT_SHIFT)

/* CAEN V462 - GATEGEN x/
#define DevGategenBase DasTeamNumber + (7 << DS_IDENT_SHIFT)
/* ADAS ICV101 - ADC */
#define DevAdcicvl01Base DasTeamNumber + (8 << DS_IDENT_SHIFT)

/* ECT40 TFG */

#define DevTfgBase DasTeamNumber + (9 << DS_IDENT_SHIFT)
/* EC738 MCS */

#define DevMcsBase DasTeamNumber + (10 << DS_IDENT_SHIFT)
/* VVHIST x/

#define DevHcBase DasTeamNumber + (11 << DS_IDENT_SHIFT)
/* HM - MM6326 */

#define DevHmBase DasTeamNumber + (12 << DS_IDENT_SHIFT)
/* Current Transformer */

#define DevCtBase DasTeamNumber + (13 << DS_IDENT_SHIFT)

#endif /* _DasDsNumbers_h */
e Error Category:

Not yet used.
Reserved for a future classification of error messages.

e Error Number:
The original error number to identify the error.

17.4 Command Numbers

The command number, defined as a long word, is split into three different fields:

164CHAPTER 17. ADDING PRIVATE COMMANDS, ERRORS AND XDR DATA TYPESBY J.MEYER /

| - Command Number

— Device Server Identification

Team Number

The distribution of Team Number and Device Server Identification is the
same as described in the last section.

17.5 Database Support

To avoid linking with long lists of error messages or command name strings, all
this text information is now stored as resources, in two new tables, of the static
database. The new tables are ERROR for error messages and CMDS for com-
mand name strings. To specify a private error and command in a device server
class, the following defines and resources are necessary.

Define the error code:

#define DevErr_MyError DevMyBase + Error_Number

Specify the error string as a resource in the database. Use the Team Number as
defined in DserverTeams.h and the Device Server Identification as defined, for your
class, in your programming team‘s identification file, in the resource path :

ERROR/Team Number/DS_Identification/Error Number: ”Error Message”

Example:
#define DevErr_SetHighLimit DevMcceBase + 15
ERROR/2/3/15: "Unable to set polarization high limit"
#define DevSetHighLimit DevMcceBase + 15
CMDS/2/3/15: "DevSetHighLimit"

All general errors and commands as they are defined in the include files De-

vErrors.h and DevCmds.h are loaded in the database as resources with the
Team_Number = 0 and the DS_Identification = 0. Only the error messages for API

and database errors are kept in a global error list.

In all versions of the API-library, starting with version 3.20, the functions dev_printerror_no(),
dev_error_str() and dev_cmd_query() use error and command resource defini-

tions. To relink older software should not cause problems, as long as these functions

are used and the global lists are not directly accessed.

17.6 Time Stamp for Error Messages

All error strings created by the API-library functions dev_printerror_no and
dev_error_str() include a time stamp before the error message. The returned
error strings are in the format:

”Sun Sep 16 01:03:52 1993 This is my error message.”

A description of the two error functions can be found in the man page dev_error.3x.

17.7. THE RESTRUCTURED XDR CONCEPT 165

17.7 The restructured XDR concept

In the last version all available XDR data types were known to servers and clients.
This growing list was abandoned in the new release (version 3.30). It is replaced
by a small kernel of general purpose data types and a dynamic list, which can hold
private XDR data types used by servers or clients.

The set of data types in the kernel is always available and automatically loaded.
All other XDR data types that should be used, must be explicitly loaded at startup
time of a server or client.

The implemented general purpose data types are:

1. D_.VOID_.TYPE
2. D BOOLEAN_TYPE
D_SHORT_TYPE

- w

D_.LONG_TYPE

o

D_FLOAT_TYPE
D_DOUBLE_TYPE
D_STRING_TYPE
D.INT.FLOAT_TYPE

© »®» N @

D_FLOAT READPOINT

10. D.STATE_FLOAT_READPOINT

11. D.LONG_READPOINT

12. D.DOUBLE_READPOINT

13. D_-VAR.CHARARR

14. D_.VAR_STRINGARR

15. D_-VAR_.SHORTARR

16. D_.VAR_.LONGARR

17. D_-VAR_.ULONGARR

18. D_VAR_FLOATARR

19. D_.VAR.DOUBLEARR

20. D_.VAR_FRPARR - Float Readpoint Array
21. D_VAR_LRPARR - Long Readpoint Array
22. D_.OPAQUE_TYPE - Block of Bytes

To recompile your old software, which might use other XDR data types as the ones
mentioned in the above list, you have two possibilities.

1. To change the code and load all necessary XDR descriptions as described
in the next section. Like this you will link only with the XDR functions you
really need. The size of the executable will reduce.

166 CHAPTER 17. ADDING PRIVATE COMMANDS, ERRORS AND XDR DATA TYPESBY J.MEYER /

2. To change the include files (see section 7.4) and the Makefile to link
with the library

libdsxdr_all.a or 0s9-dsxdr_alllib.l

which will load all XDR data types known in the last versions up to 3.29.

17.8 Private XDR Data Types

17.8.1 Data Type Numbers

The data type number, defined as a long word, is split into three different fields:

|- Data Type Number

— Device Server Identification
— Team Number

The distribution of Team Number and Device Server Identification is the
same as described in section 2.

17.8.2 What is a Complete XDR Data Type Definition?

A XDR data type definition consists of a .h and a .c file. In the include file are
the C type definition, the declaration of the XDR functions , the declaration of the
XDR length calculation functions (for the data collector), the definition for the data
type number and the definition of the load macro.

Example (ct_xdr.h):

#include <DasDsNumbers.h>

/*
* definitions for current transformer data type

*/

struct DevCtIntLifeTime {
float Deltalntensity; /* delta-intensity for this measure */

float LifeTime; /* value of the life-time */
long DateTicks; /* date in ticks since midnight */
long DeltaTused; /* delta-T used for calculations */

};

typedef struct DevCtIntLifeTime DevCtIntLifeTime;

/* The declaration for the xdr function */

bool_t xdr_DevCtIntLifeTime ();

/* The declaration for the xdr length calculation function x/
long xdr_length_DevCtIntLifeTime ();

17.8. PRIVATE XDR DATA TYPES 167

struct DevVarCtIntLifeTimeArray {
u_int length;
DevCtIntLifeTime *sequence;
};
typedef struct DevVarCtIntLifeTimeArray DevVarCtIntLifeTimeArray;
/* The declaration for the xdr function */
bool_t xdr_DevVarCtIntLifeTimeArray ();

/* The declaration for the xdr length calculation function */
long xdr_length_DevVarCtIntLifeTimeArray ();

/* The definition of the data type number */
#define D_CT_LIFETIME DevCtBase + 1

/* The definition of the load macro */

#define LOAD_CT_LIFETIME(A) xdr_load_type (D_CT_LIFETIME, \
xdr_DevVarCtIntLifeTimeArray, \
sizeof (DevVarCtIntLifeTimeArray), \
xdr_length_DevVarCtIntLifeTimeArray, \
A)

The .c file contains the XDR functions and the XDR length calculation functions
for the data type.

More information on how to write a XDR function can be found in the HP, SUN
or 0OS9 documentation of NFS/RPC. In addition to the standard XDR functions,
all translation functions of the defined general purpose data types can be reused.
The XDR length calculation functions are structured in the same way as the XDR
functions. The length of each structure field has to be summed up to find the length
of the structure in XDR format. Reusable XDR length calculation functions are
available for all defined general purpose data types.

Example (ct_xdr.c):

#include <dev_xdr.h>
#include <ct_xdr.h>

bool_t

xdr_DevCtIntLifeTime (xdrs, objp)
XDR *xdrs;
DevCtIntLifeTime *objp;

if (!xdr_float(xdrs, &objp—->Deltalntensity)) {
return (FALSE);

}

if (!xdr_float(xdrs, &objp->LifeTime)) {
return (FALSE);

}

if (!xdr_long(xdrs, &objp->DateTicks)) {
return (FALSE);

}

if (!xdr_long(xdrs, &objp->DeltaTused)) {
return (FALSE);

}

return (TRUE);

168CHAPTER 17. ADDING PRIVATE COMMANDS, ERRORS AND XDR DATA TYPESBY J.MEYER /

long
xdr_length_DevCtIntLifeTime (objp)
DevCtIntLifeTime *objp;
{
long length = 0;

length = length + xdr_length_DevFloat (&objp->Deltalntensity);

length = length + xdr_length_DevFloat (&objp->LifeTime);
length = length + xdr_length_DevLong (&objp->DateTicks);
length = length + xdr_length_DevLong (&objp->DeltaTused);

return (length);

}
bool_t
xdr_DevVarCtIntLifeTimeArray(xdrs, objp)
XDR *xdrs;
DevVarCtIntLifeTimeArray *objp;
{
if (!xdr_array(xdrs, (char **)&objp->sequence,
(u_int *)&objp->length, ~0, sizeof (DevCtIntLifeTime),
xdr_DevCtIntLifeTime)) {
return (FALSE);
}
return (TRUE);
}
long

xdr_length_DevVarCtIntLifeTimeArray (objp)
DevVarCtIntLifeTimeArray *objp;

{
long length = 0;
/*
* four bytes for the number of array elements
*/

length = length + xdr_length_DevLong (&objp->length);
/*
* mnow calculate the length of the array

*/

length = length + (objp->length *
xdr_length_DevCtIntLifeTime (&objp->sequence[0]));

return (length);

17.8. PRIVATE XDR DATA TYPES 169

17.8.3 How to Integrate a New Data Type?

The integration of a new, private XDR data type must be done in two steps. First,
the load macro of the data type must be called once at startup time of a server or a
client. The best place in a device server is the method DevMethodClassInitialise
to execute all necessary load macros. In a client the same macros have to be executed
before the data types are used.

Example:

long *error;

if (LOAD_CT_LIFETIME(error) == DS_NOTOK)

{
return (DS_NOTOK) ;

Second, the XDR functions of the data type must be linked to server and client.
This should be done locally first to test the data transfer. Afterwards the new XDR
data type can be used completely local for server and client, or can be integrated
to the XDR library. To make the data type visible to other clients who want to use
the service.

17.8.4 Available Data Types

The XDR library contains the data type for the kernel as described in section 6
and a number of hardware specific data types. Here is a list of all data types not
referenced in the kernel and their include files with the type definitions.

1.

2.

A NS

© ® N

10.
11.
12.
13.
14.

bpm_xdr.h : D.BPM_POSFIELD, D_BPM_ELECFIELD

wsxdr.h : D-WS_BEAMFITPARM

vgexdr.h : D_.VGC_STATUS, D_VGC_GAUGE, D_VGC_CONTROLLER

ram xdr.h : D.NEG_STATUS, D_RAD_DOSE_VALUE

thc_xdr.h : D_.VAR_THARR, D_LIEN_STATE

hazxdr.h : D.HAZ_STATUS

vrif xdr.h : D_.VRIF_WDOG, D_VRIF_STATUS, D_VRIF_POWERSTATUS
gpibxdr.h : D_.GPIB_.WRITE, D_.GPIB.MUL_WRITE, D_GPIB_RES, D_GPIB_LOC
bpss_xdr.h : D_.BPSS_STATE, D_.BPSS_READPOINT, D_BPSS_LINE, D_.STATE_INDIC
pssxdr.h : D_PSS_STATUS

rf xdr.h : D_.RF_SIGCONFIG

ct_xdr.h : D_.CT_LIFETIME

daemon xdr.h : D.DAEMON_STATUS, D_.DAEMON_DATA

seism xdr.h : D_.SEISM_EVENT, D_SEISM_STAT

170CHAPTER 17. ADDING PRIVATE COMMANDS, ERRORS AND XDR DATA TYPESBY J.MEYER /

15.
16.
17.
18.
19.
20.

21.

22

slit xdr.h : D.BLADE_STATE, D_PSLIT STATE

attexdr.h : D ATTE_ TYPE

maxe xdr.h : D MULMOVE_TYPE, D MOTOR_LONG, D MOTOR_FLOAT
icv101xdr.h : D.VAR_PATTERNARR, D_ICV_.MODE

mstatxdr.h : D_.VAR_MSTATARR

m4_xdr.h: D.-VAR_.LONGFLOATSET, D_.VAR_LONGREAD, D_VAR_POSREAD,
D_VAR_AXEREAD, D_-VAR_PARREAD, D_VAR_ERRREAD

grpxdr.h : D_.GRPFP_TYPE
. pinxdr.h : D_.PINSTATE_TYPE

17.9 Numbering Limits

Due

to the length of the bit fields in an error or command number the numbering

limits are:

17.
The

Imp

Bit Field Bits | Possible Numbers
Team Number 6 0-63

DS Identification 8 0- 255

Error Category 6 0-63

Error Number 12 0 - 4095
Command Number 18 0 - 262143

XDR Data Type Number | 18 0 - 262143

9.1 Master Copies

master copy of all sources can be found under the path
DSHOME=libra:/users/d/dserver

ortant files and pathes are:

e $DSHOME /include/DserverTeams.h

Containing all predefined programming team numbers.

e $DSHOME/include/CntrlDsNumbers.h

Containing the machine control groups‘s device server identifications.

¢ $DSHOME/include/DasDsNumbers.h

Containing the data acquisition groups‘s device server identifications.

¢ $DSHOME/include/BlcDsNumbers.h

Containing the beam line control groups‘s device server identifications.

e $DSHOME/system/api/cmds_err/res/dev_errors.res

Containing all error default error strings, which have to be loaded into the
resource database. The database table ERROR must be defined!

e $DSHOME/system/api/cmds_err/res/dev_cmds.res

Containing all default command name strings, which have to be loaded into
the resource database. The database table CMDS must be defined!

17.10. CONCLUSION 171

e $DSHOME/dev /system /xdr
The subdirectories include and src contain all .h and .c files for the XDR data
types which are available in the XDR library libdsxdr.a.

e libdsxdr_all.a or 0s9-dsxdr_alllib.1
The version of the API-library which loads automatically all XDR data types
which were available up to version 3.29.

17.10 Conclusion

The new versions of the API-and XDR-library, give the possibility to define private
commands, errors and XDR data types. The only condition is to respect the correct
Team_Number and DS_Identifaction for definitions and the resource pathes.
Attention:

If the numbering scheme is not respected resources of other classes or general re-
source definitions will be deleted. The ERROR and CMD tables in the resource
database are not yet protected.

Despite private definitions, the wheel should not be reinvented. Errors and com-
mands should be reused as long as an appropriate definition can be found in the
general files DevErrors.h and DevCmds.h.

Also, first try to reuse already existing XDR, data types before creating new ones.
In 80% of all cases the general purpose data types are sufficient.

172CHAPTER 17. ADDING PRIVATE COMMANDS, ERRORS AND XDR DATA TYPESBY J.MEYER /

Chapter 18

Interfaces

TACO has been interfaced to a number of other languages and programs. The main
interfaces are C and C++ and are described in a separate chapter. In addition
to these two languages the following languages/programs have been interfaced to
TACO :

e Python - contact Jens Meyer (meyer@esrf . fr) or Marie-Christine Dominguez
(domingue@esrf.fr)

e Tcl - contact Gilbert Pepellin (pepellin@esrf.fr)

e MathLab - contact Laurent Farvacque (laurent@esrf . fr) or Francis Epaud
(epaud@esrf . fr)

e LabView - contact Andy Gotz (goetz@esrf.fr)
e SPEC - contact Gerry Swislow (info@certif.com)

For more information refer to the website or contact the person involved directly.

173

174 CHAPTER 18. INTERFACES

Appendix A

Licence

TACO is free software; you can redistribute it and/or modify it under the terms
of the GNU General Public License as published by the Free Software Foundation;
either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY:; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free software--to make sure
the software is free for all its users. This General Public License applies
to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you
wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to

deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute

175

176 APPENDIX A. LICENCE

copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If
the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will
individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The "Program", below, refers to any such
program or work, and a "work based on the Program" means either the Program
or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term "modification".) Each
licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the
Program does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you

177

may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

* a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

* b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

* c) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use
in the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program itself
is interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves, then
this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections
as part of a whole which is a work based on the Program, the distribution of
the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sectiomns 1
and 2 above provided that you also do one of the following:

* a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2

above on a medium customarily used for software interchange; or,

* b) Accompany it with a written offer, valid for at least three years,

178 APPENDIX A. LICENCE

to give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

* c) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with
the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not

179

excuse you from the conditions of this License. If you cannot distribute so
as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both
it and this License would be to refrain entirely from distribution of the
Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this Licemnse.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded.
In such case, this License incorporates the limitation as if written in the
body of this Licemnse.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditiomns
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

180 APPENDIX A. LICENCE

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS) , EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

