

HDB++

L. Pivetta

lorenzo.pivetta@elettra.trieste.it

Elettra - Sincrotrone Trieste, Trieste, Italy

- Novel Tango device server for Historical Data Base archiving
- Written in C++
- Fully event-driven
- Architecture based on:
 - One or more Event Subscriber DS
 - One Configuration Manager
 - One or more Data Extraction DS
 - Libraries for data insertion and extraction API
- HDB++ Tango DS Design Guidelines distributed to EC members last week (ELETTRA + ESRF joint effort)

- Fast
- Efficient
- Reliable
- Event driven: each Tango DS knows when to archive something
- Flexible: easy to manage and maintain even without graphical frontends
- Self contained: single source for all configuration parameters (Tango DB)
- Modular: dedicated decoupling libraries to support different database engines, data insertion, data extraction
- Scalable: comes from Tango architecture... for free

A number of considerations lead to choose C++ language; amongst them:

- Efficiency
- Better support and maintenance for C++: Tango core development language as well as ZeroMQ
- Small API for DB access foreseen
- Well known approach at ELETTRA: Alarm DS, PLCs DS
- Existing ESRF development to archive from Tango CS to legacy historical DB
- New additional implementation for HDB archiving

- Average number of insertion per second: 100 to 1K
- Peak number of insertion per second: 1K to 10K
- Number of different attributes to store: 10K to 100K
- Max size of data per attribute*frequency: 8 byte*1K = 8KB (but...)
- Do we allow to store 25 images per seconds? ...err ...no?!? (but...)

- Machine 1: 1 * Intel(R) Core(TM)2Duo E7500, 2.93GHz, 4GB RAM
- Machine 2: 2 * Intel(R) Xeon(R) CPU E5462, 2.80GHz, 16GB RAM
- Ubuntu 10.04 64 bit
- MySQL 5.6.11, MyISAM tables

mysql> describe att_00050;										
Field		 Type 		Nu	Null Key		Default	Extra	a	
time read_value write_value		datetime(6) double double		I NO YES YES			0000-00-00 00:00:00.000000 NULL NULL			
mysql> describe att_00054;										
Fie	Field Type		Nul	1	Key	D	Default			
tin val	+ me lue	datetime(6) tinyint(4)		NO YES				0000-00-00 00:00:00.000000 NULL		
+ tir	+ me	+ e datetime(6) NO		 NO	+ 00		+ 0	+	Extr 	a

• *double* and *tinyint* clients written in C

host	client	instances	inserts/s	MySQL CPU load	note
machine 1	double	1	24000	99%	
machine 1	double	2	37700	155%	
machine 1	double	3	38000	155%	
machine 1	tinyint	1	23500	99%	

host	client	instances	inserts/s	MySQL CPU load	note
machine 2	double	1	20000	99%	
machine 2	double	2	38000	200%	
machine 2	double	3	58000	300%	
machine 2	double	4	77000	398%	
machine 2	double	5	88000	457%	
machine 2	double + tinyint	5 + 1	101000	516%	
machine 2	double + tinyint	5 + 2	113000	580%	
machine 2	double + tinyint	5 + 3	127000	640%	+ sys = full load
machine 2	double + tinyint	6 + 3	127000	640%	

Courtesy R.Passuello

Client host Machine 1, server host Machine 2, 1 Gb/s eth connection

client host	server host	client	instances	inserts/s	MySQL CPU load	note
machine 1	machine 2	double + tinyint	4 + 3	49000	250%	
machine 1	machine 2	double + tinyint	5 + 3	55200	280%	
machine 1	machine 2	double + tinyint	2 * (5 + 3)	74000	450%	
machine 1	machine 2	double + tinyint	3 * (5 + 3)	89000	650%	
machine 1	machine 2	double + tinyint	4 * (5 + 3)	98000	730%	

Courtesy R.Passuello

Mon Apr 15 20:00:05 2013 - Duration: 23h59m57s - 4659 signals - 1669633 writes Tue Apr 16 20:00:05 2013 - Duration: 23h59m57s - 4651 signals - 1564622 writes Wed Apr 17 20:00:06 2013 - Duration: 23h59m58s - 4689 signals - 1709353 writes Thu Apr 18 20:00:05 2013 - Duration: 23h59m57s - 4516 signals - 1544975 writes Fri Apr 19 20:00:05 2013 - Duration: 23h59m57s - 4507 signals - 1625554 writes Sat Apr 20 20:00:06 2013 - Duration: 23h59m58s - 4520 signals - 1682674 writes Sun Apr 21 20:00:06 2013 - Duration: 23h59m57s - 4633 signals - 1796858 writes Mon Apr 22 20:00:06 2013 - Duration: 23h59m57s - 4547 signals - 1701167 writes Tue Apr 23 20:00:05 2013 - Duration: 23h59m56s - 4737 signals - 2256014 writes Wed Apr 24 20:00:06 2013 - Duration: 23h59m58s - 4731 signals - 1835094 write Thu Apr 25 20:00:06 2013 - Duration: 23h59m56s - 4540 signals - 1750970 writes Fri Apr 26 20:00:06 2013 - Duration: 23h59m58s - 4522 signals - 1746862 writes Sat Apr 27 20:00:06 2013 - Duration: 23h59m57s - 4531 signals - 1566629 writes Sun Apr 28 20:00:06 2013 - Duration: 23h59m57s - 4510 signals - 1570094 writes Mon Apr 29 20:00:05 2013 - Duration: 23h59m56s - 5045 signals - 1764713 writes Tue Apr 30 20:00:06 2013 - Duration: 23h59m58s - 5060 signals - 1520570 writes Wed May 01 20:00:05 2013 - Duration: 23h59m56s - 4965 signals - 1423531 writes Thu May 02 20:00:05 2013 - Duration: 23h59m57s - 4847 signals - 1434059 writes . . .

Courtesy P.Verdier

2.256.014 / 24 / 60 / 60 = 26 write/s mean value (no info on peak value, but...)

- Same DB tables: backward compatible for clients. Extended tables?
- Non event-based archiving: additional polling subsystem (Tango DS) may act as gateway polling the devices and generating events. Not part of the HDB++
- Legacy DB data migration (ESRF specific): to be addressed