Proposal for Shadow3

(version of Sept, 25 2009)

Context and boundary conditions

It is quite urgent to update SHADOW, because:

· The binaries available present problems in new machines, with new libraries.

· The current version is quite old, and it is more and more difficult to recompile (note that g77 compiler is not longer supported)

· Many limitations, inherited from the old computers (line number of rays) are important drawbacks

· It is very difficult to add new features, due to the old structure.

It would be desirable to rewrite everything from scratch, perhaps using a new language. But this is not possible because:

· Lack of specialized man-power

· Lack of time for reviewing and testing the new version

· This is an old idea that never completed.

Minimal requirements for the new version:

· Be back-compatible. That means that users that know SHADOW will feel “comfortable” with the new one

· Solve important limitations of the old versions, like the number of rays

· Be flexible to easily modify and add new features

· Availability also as a shadow library, where the (advanced) user can easily modify the main code and create ad-hoc codes.

Proposition for upgrading SHADOW's kernel

At present, the SHADOW package can be divided in:

1) A kernel (gen_source, trace) with the necessary pre-processors (bragg, prerefl, etc)

2) Set of utilities to analyze results (star,mirr,screen files) histo1, plotxy, focnew, etc

3) Other utilities (graphic libraries, menu, etc)

4) GUI

The key part of SHADOW is its kernel, so we should concentrate only on this part let the rest for later. That means, to work with gen_source and trace. The other utilities can be replaced by external user interfaces (like ShadowVUI) and old versions of SHADOW, if input/output compatibility is requires. The GUI, PRIMVS and possibly MENU should not be supported (there are very complex and system-dependent) or let for student work in the future.

Main propositions for SHADOW 3:

· Language: It is important to keep SHADOW open source and compiled with an open source compiler. Rewriting SHADOW in IDL, MatLab, etc could be fast, but all these are proprietary codes. Translate into C/C++ will be a great pain. It is proposed to keep it in Fortran, using the new fortran95 (f95)

· Fortran95 can help in improving the code a lot because:

· A “soft” transition is expected (?) from f77 to f95

· Common blocks should be encapsulated in “modules”

· Is not limited to dimensioned arrays (free number of rays using allocatable arrays)

· f95 has interfaces to other programming languages and in principle external tools

· Supported platforms: Linux, Window and MacOS

· the g95 compiler (www.g95.org) is free, opensource and works on the three supported platforms. Once code is ported to standard f95, other compiles could be used without problems (gfortran (free), lahey-fujitsu, intel, etc)

· Many utilities that are now coded in SHADOW for basic things like string management, argument passing, etc, are 'standard' in f95.

· For backwards compatibility, we should keep the current file format, based on gFiles for parameters and star files for beam dumps.

· All code for “namelist”compatibility should be removed. I checked the possibilities to use namelists in fortran 95 and is not very easy. It is not east to translate from namelist to gfile, as namelists use a particular way to write the arrays.

· In future, this could be changed, for instance gFiles can be substituted or complemented by XML (I spent some time checking it and I have a working version), and star files by some binary compressed format.

· SHADOW sources. At present gen_source deals with all kind of sources (geometrical, BM, wiggler and undulator). This is a real problem, and the intense use of preprocessor makes things very complicated. I propose to split gen_source, into three smaller programs:

· Source_g: keep only the geometrical sources (perhaps re-splitted in random and grid sources)

· Source_bm: bending magnet. Use always the “exact”calculation (it is as fast as the precalculated one), thus remove all dependencies of extra data files.

· Source_cdf: reads a cdf created by preprocessors (like is done now for undulators). A preprocessor for undulator and another for wiggler could be provided, but is not urgent. Right now, undulators are in very good approximation Gaussian sources, so they can be modeled accurately with the Source_g. Wigglers are not very much used today, and SHADOW has the drawback that it created the full emission, which is never used. We could think in upgrading these later.

· SHADOW trace. Fundamental points to solve:

· Mirr.F is a great pain. It should be splitted in several parts. Separate well the geometrical reflection from the physical calculations (reflectivities). But this could be left for a second phase...

· Sort common blocks and introduce them in fortran 95 modules.

· Make arrays allocatable. First, all related to the beam (ray), then all the rest (related to number of points in mesh, reflectivities, etc)

· Rebuild the optical library. In a first step, use the same format, but update the data. Ideally, in my opinion, “trace” should not be linked to the optical library, but should read input files with physical constants or cdf created with the library. I do not think this can be easily done in a first phase, so we should maintain an optical library. However, it must be updated with recent data, and extend in photon range. Also Compton cross section should be implemented, it is needed for absorption (filters) at high energies.

· Presently, the oe is “a single surface”. For the future, I would like to define an input and an output surface for each oe. That will permit to create “long” oe, like compound refractice lenses, wave guides that bend the beam, and to glue many mirror in a single oe, like for astronomical telescopes.

Planning

Language features:

· Everything in fortran, nothing in C (as we discussed in our meeting in March 2009)

· A first alpha working version should contain the main SHADOW (source+trace) plus the unavoidable preprocessors. No graphics, no VUI, no optional post-processing for the moment.

· Compiler g95, and test others
· Platforms: Linux, Windows, MacOS

· No include files (as standard in f95)

· Group routines in f95 modules, not in libraries

· Compilation to be done with small script files. The present configuration and makefiles are great but extremely complex, and is not easy to find and correct problems. Use small shell scripts in Linux, and a bat file in Windows

· Avoid using compiler options (flags) for a maximum compatibility with standard f95

· Work with trace

· Readjust common blocks and put them in a f95 module

· Make ray arrays allocatable

· Make it working for mirrors, gratings

· Create case tests for the different geometrical sources

· Create case tests for different systems (no reflectivity)

· Compare tests with old versions.

Alpha0 version (completed 2009-09-25)

· A new gfile f95 module has been written. Old C code for gfiles removed [DONE]

· Namelist, although supported in f95, not recommended (I checked it and found problems: for compatibility with current version, a translator should be written, and it creates a lot of small painful problems). XML i/o has been tested, work well, but kept for future upgrades. A new fully f95 compatible module for gfiles should be written [DONE]
· Check beamio (rbeam*, write_off) , adapt them to arrays of any size, goup then in a module beamio.f95 [DONE]
· The current random number generator is in C, it must be changed. There are now recent implementations in fortran 95 of the Mersenne Twister that work very well [TESTED]. For the moment, we use the native in f95 [DONE]

· Create a source program for only geometrical sources extracting the code from gen_source [DONE]

· Remove limitations in number of rays, by using allocatable arrays [DONE]

Alpha1 version

· Compile and modularize trace, removing calls to optical library and some devices used very rarely and giving many problems (Kumakhov, etc). Include trace in the module shadow.f95 and update the other modules.

· Create source for bending magnet

Alpha2 version

· Update the optical database

· Implement mirror, multilayer and crystal reflectivities

· Implement mirror imperfections: splines and others

Alpha3 version

· Source_cdf and undulator + wiggler

· Postprocessors (without graphics)

· Create case tests (including those in documentation and demo)

· Final tests

At this point a first beta should be ready

