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Report: 

The solid electrolyte interphase (SEI), formed as a consequence of Li plating during the Lithium mediated 

ammonia synthesis (LiMeAS) is often invoked to explain observed changes in stability and faradaic 

efficiency1,2. Nevertheless, the exact function and composition of the SEI remained largely unexplored as most 

studies rely on ex-situ techniques1,3,4. The work described in this report, represents the first and currently only 

in-operando study of the LiMeAS using the state of the art electrolyte salt LiBF4. The previous standard 

electrolyte composition was also studied with a 5 s time resolution compared to at best 3 min in previous in situ 

studies5,6. 

In this study the deposits on a Cu(111) single crystal working electrode was investigated using grazing incidence 

wide angle x-ray scattering, during chronopotentiometry (CP) at – 2 mA cm-2. Figure 1A shows the time 

development of the Li (110) reflection, when different electrolyte compositions were used. Whithout ethanol 

(EtOH) in the electrolyte the intensity increased continuously while a current was applied and decreased only 

slowly afterwards, independent of the electrolyte salt used. This is in accordance with the current 

understandingof LiMeAS that EtOH is needed to protonate intermediate Li-N-species to form ammonia. As 

faradaic efficiencies were below 5% when using the synchrotron cell due to the low nitrogen availability, the 

main reaction occuring was likely the competing reaction to form H2 (2 𝐿𝑖 + 2 𝐻+ → 𝐻2). Therefore the 

addition of EtOH in the electrolyte should hinder Li plating. Indeed, as shown in Figure 1A when LiClO4 was 

used as electrolyte salt, the Li(110) reflection was only observed temporarily while current was applied, 

indicating fast reactions of the plated Li. Contrary, when LiBF4 was used the Li(110) signal initially increased 

continously until a decrease was observed. The difference in the Li plating behaviour clearly indicates a 

significant difference in the formed SEI. The initial increase in Li(110) intensity shows that the SEI formed by 

LiBF4 limits proton transport to the plated Li as otherwise Li would react and dissolve. To understand the 

difference between the SEI layers formed from different electrolytes, other species have to be considered. 

When using LiClO4 the only crystalline species detected is Li2CO3, which is only observed when also EtOH is 

present, potentially indicating that EtOH is decomposed. More likely however, Li2CO3 is formed from 

decomposition products of the organic solvent, that only form with EtOH7.  



 

When LiBF4 was used, LiF was already detected in the first measurements, indicating thermal decomposition 

of the electrolyte salt. As shown in Figure 1B and 1C the intensity of peaks associated with LiF continued to 

increase before the CP, caused by beam induced decomposition of LiBF4
8. However, when a current was applied 

the intensity of LiF peaks increased steeply in all electrolytes with LiBF4. Throughout the experiment, when 

more Li was deposited, less LiF could be detected. With EtOH, later an increase in LiF peak intensities was 

observed, when less Li could be detected. This opposing behaviour indicates that Li was plated below a layer of 

LiF so that when enough Li had been deposited this LiF layer had been lifted out of the x-ray beam. As shown 

in Figure 1C, after 26 min, a steep decrease in Li peak intensities was observed when EtOH was used. At the 

same time multiple new peaks appeared which have been attributed to LiH, LiEtO, LiNH2 and Li3N. This could 

indicate the formation of a crack in the SEI, suddenly exposing Li to the electrolyte, leading to the formation of 

multiple reaction products. The formation of LiH further shows the proton limiting properties of the SEI formed 

with LiBF4 as in the presence of protons LiH would react to form H2 (𝐿𝑖𝐻 + 𝐻+ → 𝐿𝑖+ + 𝐻2). Furthermore, the 

presence of Li3N and LiNH2 would for the first time confirm the propsed mechanism of LiMeAS in which Li 

and N2 react to form Li3N which is then protonated, forming NH3. However, the assignment of these 

intermediate species is not entirely certain, due to the low intensities of the corresponding peaks. 

 

Figure 1: A: Time development of the Li(110) peak when using different electrolyte compositions. B: Time 

development of peaks corresponding to different species detected when using 1M LiBF4 in THF as electrolyte. 

C: Time development of peaks corresponding to different species detected when using 1M LiBF4 and 1 vol% 

EtOH in THF as electrolyte. Species that could not be identified definitely are marked with *9. 
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