Preliminary report on experiment CH6424

Summary

Four samples were measured, labelled as tetrazol, MePy2, dabco and quinone. Diffraction data for MePy2 and dabco were measured up to $0.45 \AA$ and were of high quality, so the charge densities were successfully refined (see below, Figs. 2-10). Crystals of tetrazol were small and twinned, which allowed only spheric refinement. Nevertheless, the atomicresolution crystal structure is very accurate and publicable (see below, Table 1 and Fig. 1). Six high-resolution diffraction data of quinone were collected $0.45 \AA$, and spheric refinement was very good, yielding publicable crystal structures. However, multipolar refinement was difficult and residual density remains unacceptably high. We are still working on multipolar refinement; in the worst case, atomic-resolution crystal structure will be publicable.

Experimental

Single-crystal X-ray diffraction data were collected at the Rossendorf Beamline (ESRF / Grenoble, France) (Scheinost et al., 2020) equipped with a $\operatorname{Si}(111)$ monochromator and two Pd coated mirrors. The single-crystal data were recorded with a Pilatus3 X 2M detector (Dectris) with an excitation energy of $20000 \mathrm{eV} / 0.6200926 \AA$. The monochromator energy was calibrated against the first inflection of the K-absorption edge of a Mo metal foil point, tabulated as 20000 eV . The diffraction measurements were performed in shutterless mode with an angular step size of 0.1° and a counting time of 0.1 s per frame. The detector geometry parameters were calibrated with PyFAI (Kieffer \& Wright, 2013) using a powder pattern of the NIST 660b standard LaB_{6}. Experimental data were collected using the Pylatus software (Dyadkin et al., 2016) and treated using the SNBL ToolBox (Dyadkin et al., 2016) and CrysAlisPro (Rigaku OD, 2019).

The structures were solved using SHELXT (Sheldrick, 2018) and a spherical-atom model was refined using SHELXL-2017 (Sheldrick, 2015). Multipolar refinement was carried out vs. all reflections F^{2} with program package MoPro (Jelsch et al., 2005). Metal and halogen atoms were modelled as hexadecapoles, O, N and C as octupoles and hydrogens as dipoles; loose
restraints were used for multipoles and exponential κ coefficients of chemically equivalent atoms. Vibrations of metal and halogen atoms were refined as anharmonic using fourth-order Gram-Charlier coefficients. Anisotropic parameters for hydrogen atoms were calculated by the SHADE3 server (Madsen, 2006) and kept fixed in the multipolar atom refinement; aromatic $\mathrm{C}-\mathrm{H}$ bond lengths were restrained to $1.077(2) \AA$ and methyl $\mathrm{C}-\mathrm{H}$ to 1.083(2) \AA. Due to a limited quality of the diffraction data and twinning, tetrazol was refined only by spheric model with resolution cut off to $0.80 \AA$.

For Me2Py and dabco resolution was cut off at $0.50 \AA$ Å. In Me2Py vibrations of atoms N2B, C8B, N7, C14 and C25 were refined as anharmonic using fourth-order Gram-Charlier coefficients. In dabco vibrations of atoms C14A, and C16A were refined as anharmonic using fourth-order Gram-Charlier coefficients.

Geometry and charge-density calculations and analysis of Hirshfeld surfaces were performed by MoPro (Jelsch et al., 2005); molecular graphics were prepared using MoProViewer (Guillot, 2012) and CCDC-Mercury (Macrae et al., 2020). Crystallographic and refinement data are shown in Table 1.

Table 1 Crystallographic, data collection and charge-density refinement details.

Compound	tetrazol	Me2Py	dabco	quinone*
Empirical formula	$\mathrm{C}_{74} \mathrm{H}_{42} \mathrm{~N}_{20}$	$\mathrm{C}_{61} \mathrm{H}_{31} \mathrm{~N}_{19}$	$\mathrm{C}_{78} \mathrm{H}_{59} \mathrm{~N}_{25}$	$\mathrm{C}_{21} \mathrm{H}_{11} \mathrm{Cl}_{5} \mathrm{CuIN}_{3} \mathrm{O}_{2}$
Formula wt. / g mol^{-1}	1211.28	1029.97	1346.40	705.03
Crystal dimensions / mm	$\begin{aligned} & 0.08 \times 0.02 \mathrm{x} \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.12 \times 0.10 \\ & \times 0.06 \end{aligned}$	$\begin{aligned} & 0.14 \times 0.11 \mathrm{x} \\ & 0.05 \end{aligned}$	$0.12 \times 0.06 \times 0.04$
Space group	$P 2{ }_{1} / c$	$P \overline{1}$	$P \overline{1}$	P 21/n
a / \AA	29.0602(6)	13.1638(2)	7.8028(1)	9.90659(16)
b / \AA	11.5161(3)	13.5312(2)	13.3989(1)	21.6589(4)
c / \AA	19.7924(6)	15.6098(2)	16.5465(1)	17.4384(3)
$\alpha /{ }^{\circ}$	90	105.985(1)	80.910(1)	90
$\beta{ }^{\circ}$	109.859(3)	101.257(1)	81.4170(1)	140.309(3)
$\gamma /{ }^{\circ}$	90	103.275(1)	83.9710(1)	90
Z	4	2	2	4
V / \AA^{3}	6229.8(3)	2500.30(6)	1683.175(17)	2389.58(7)
$D_{\text {calc }} / \mathrm{g} \mathrm{cm}^{-3}$	1.291	1.369	1.329	1.987

μ / mm^{-1}	0.053			2.830
θ range ${ }^{\circ}$	1.52-40.67	$\begin{aligned} & 1.47- \\ & 40.49 \end{aligned}$	$1.46-40.61$	1.48-35.51
T/K	100(2)	100(2)	100(2)	100(2)
Radiation wavelength	0.56356	0.56356	0.56356	0.56356
Detector type	Dectris Pilatus3 X 2M	Dectris Pilatus3 X 2M	Dectris Pilatus3 X 2M	Dectris Pilatus3 X $2 \mathrm{M}$
Range of h, k, l	$\begin{aligned} & -66<h<66 \\ & -26<k<26 \\ & -45<l<45 \end{aligned}$	$\begin{aligned} & -30<h< \\ & 30 ; \\ & -26<k< \\ & 26 ; \\ & -35<l< \\ & 35 \end{aligned}$	$\begin{aligned} & -18<h<17 ; \\ & -30<k<30 ; \\ & -37<l<38 \end{aligned}$	$\begin{aligned} & -19<h<19 ; \\ & -43<k<43 ; \\ & -34<l<34 \end{aligned}$
Reflections collected	439755	716861	253550	219444
Independent reflections	11124	36397	26904	19889
Reflections with I $\geq 2 \sigma$	10370	27031	25613	15514
Absorption correction	multi-scan	multi-scan	multi-scan	multi-scan
$T_{\text {min }}, T_{\text {max }}$	multi-scan	$\begin{aligned} & 0.891 ; \\ & 1.000 \end{aligned}$	0.7422; 1.0000	0.6147; 1.0000
$R_{\text {int }}$	0.0758	0.0424	0.0288	0.0983
Spheric refinement				
Weighting scheme	$\begin{aligned} & w=1 /\left[\sigma^{2}\right. \\ & \left(F_{o} 2\right)+(0.1701 P)^{2} \\ & +8.6629 P] \text { where } \\ & P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\right. \\ & \left(F_{o} 2\right)+(0.1 \\ & \left.533 P)^{2}\right] \\ & \text { where } P= \\ & \left(F_{o}^{2}+2 F_{c}^{2}\right) / \\ & 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\right. \\ & \left(F_{o} 2\right)+(0.0866 P) \\ & \left.{ }^{2}+0.605 P\right] \\ & \text { where } P= \\ & \left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\right. \\ & \left(F_{o} 2\right)+(0.0516 P)^{2}+1 \\ & 3.9368 P] \text { where } P= \\ & \left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \end{aligned}$
$R(F)$	0.0696	0.0752	0.0458	0.0864
$R_{w}\left(F^{2}\right)$	0.2250	0.2740	0.1398	0.2176
Goodness of fit	0.851	1.035	1.008	0.983
H atom treatment	Constrained isotropic	Constraine d isotropic	Constrained isotropic	Constrained isotropic
No. of parameters	848	733	930	298
No. of restraints	0	9	9	0
$\begin{aligned} & \Delta \rho_{\max }, \Delta \rho_{\min }, \\ & \Delta \rho_{\mathrm{rms}}\left(\mathrm{e} \AA^{-3}\right) \end{aligned}$	$\begin{aligned} & 0.499 ;-0.384 ; \\ & 0.066 \end{aligned}$	$\begin{aligned} & 0.970 \\ & -1.298 \\ & 0.097 \end{aligned}$	$\begin{aligned} & 1.050 ;-1.050 ; \\ & 0.070 \end{aligned}$	5.09; -5.32: 0.21

Multipolar

refinement

Weighting scheme	-	$w=$ $1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)\right]$	$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)\right]$
$R(F)$	0.0325	0.0216	
$R_{w}\left(F^{2}\right)$	-	0.0645	0.0545
Goodness of fit	-	1.150	1.491
H atom treatment	-	Constraine	Constrained
		d	anisotropic
	anisotropic		
No. of parameters	-	2141	2860
No. of restraints	-	1112	1351
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}$,	-	$0.458 ;$	$0.296 ;-0.283 ;$
$\Delta \rho_{\text {tms }}\left(\mathrm{e} \AA^{-3}\right)$	$-0.609 ;$	0.043	
		0.047	

* The best data set so far. Two data sets still have to be integrated.

Crystal structure of tetrazol

Asymmetric unit of tetrazol (Fig. 1) containts two symmetry-independent tetrazolium cations and four symmetry-independent partially charged 7,7,8,8-tetracyanoquinodimethane (TCNQ) radical anions. From the stoichiometry, charge of TCNQ moieties is $-1 / 2$.

Figure 1 ORTEP drawing of asymmetric unit of tetrazol with atom labelling scheme.
Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii.

Crystal structure and charge density of Me2Py

Asymmetric unit of Me2Py (Fig. 2) containts a 1,1'-methylenedipyridinium cation, four symmetry-independent partially charged 7,7,8,8-tetracyanoquinodimethane (TCNQ) radical anions and a solvent acetonitrile molecule. From the stoichiometry, charge of TCNQ moieties is $-1 / 2$.

Figure 2 ORTEP drawing of asymmetric unit of Me2Py with atom labelling scheme.
Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure 3 Residual density in the mean plane of four symmetry-independent TCNQ moieties in Me2py with all reflections used (left) and only low-angle reflections $\left(\sin \theta / \lambda<0.7 \AA^{-1}\right)$ (right) used. Positive density is shown in blue and negative in red; yellow dotted lines represent zero density. The spacing between contours is of $0.05 \mathrm{e}^{-3}$.

Figure 4 Residual density in the mean plane of two pyridinium rings of the cation in Me2py with all reflections used (left) and only low-angle reflections $\left(\sin \theta / \lambda<0.7 \AA^{-1}\right.$) (right) used. Positive density is shown in blue and negative in red; yellow dotted lines represent zero density. The spacing between contours is of $0.05 \mathrm{e}^{-3}$.

Figure 5 Left: deformation density maps in the mean planes of four symmetry-independent TCNQ moieties in Me2py. The spacing between contours is of $0.05 \mathrm{e} \AA^{-3}$; the positive density is blue, the negative is red and the zero contour is drawn as a yellow dotted line. Right: Laplacians of electron density in the mean planes of four symmetry-independent TCNQ moieties in Me2py. The contours are drawn for 2, 4, $8 \cdot 10^{n}$ e $\AA^{-5}, n=-3 \ldots 2$; positive Laplacian is blue and negative is red.

Figure 6 Left: deformation density maps in the mean planes of two pyridinium rings of the cation in Me2py. The spacing between contours is of 0.05 e \AA^{-3}; the positive density is blue, the negative is red and the zero contour is drawn as a yellow dotted line. Right: Laplacians of electron density in the mean planes of two pyridinium rings of the cation. The contours are drawn for $2,4,8 \cdot 10^{n} \mathrm{e} \AA^{-5}, n=-3 \ldots 2$; positive Laplacian is blue and negative is red.

Crystal structure and charge density of dabco

Asymmetric unit of dabco (Fig. 7) containts two symmetry-independent N, N-dimethyl-dabco cations, five symmetry-independent partially charged 7,7,8,8-tetracyanoquinodimethane (TCNQ) radical anions and a solvent acetonitrile molecule. From the stoichiometry, charge of four TCNQ moieties is $-1 / 2$, while the fifth one is neutral. With 103 symmetry-indepentent non-hydrogen atoms (and a total of 162 atoms), dabco may be the largest structure refined by unconstrained multipolar model so far.

Figure 7 ORTEP drawing of asymmetric unit of dabco with atom labelling scheme.
Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii.

Figure 8 Residual density in the mean plane of five symmetry-independent TCNQ moieties in dabco with all reflections used (left) and only low-angle reflections $\left(\sin \theta / \lambda<0.7 \AA^{-1}\right)$ (right) used. Positive density is shown in blue and negative in red; yellow dotted lines represent zero density. The spacing between contours is of $0.05 \mathrm{e}^{-3}$.

Figure 9 Left: deformation density maps in the mean planes of five symmetry-independent TCNQ moieties in dabco. The spacing between contours is of 0.05 e \AA^{-3}; the positive density is blue, the negative is red and the zero contour is drawn as a yellow dotted line. Right: Laplacians of electron density in the mean planes of five symmetry-independent TCNQ moieties in dabco. The contours are drawn for $2,4,8 \cdot 10^{n} \mathrm{e} \AA^{-5}, n=-3 \ldots 2$; positive Laplacian is blue and negative is red.

Crystal structure of quinone

Asymmetric unit of quinone (Fig. 10) comprises a molecule of a complex [CuICl(terpy)] (terpy $=2,2^{\prime} ; 6^{\prime}, 2^{\prime \prime}$-terpyridine) and a molecule of tetrachloroquinone.

So far, only four of six data sets have been processed and integrated. Spherical refinement of the best of them (Fig. 10) yielded R value of 8.64% and maximum residual density of 5.09 e \AA^{-3} using all data. With data cut off to atomic resolution, the maximum residual density is reduced below $2.0 \mathrm{e} \AA^{-3}$, so the atomic resolution structure is publicable.

Multipolar refinement has not been completed, but so far it yielded unacceptably high residual density around the I 1 atom of $5.07 \mathrm{e} \AA^{-3}$. It will probably be improved, however, it is still not certain that the charge density would eventually be publicable.

Figure 10 ORTEP drawing of asymmetric unit of quinone with atom labelling scheme.
Displacement ellipsoids are drawn for the probability of 50% and hydrogen atoms are shown as spheres of arbitrary radii.

References

Dyadkin, V.; Pattison, P.; Dimitiev V.; Chernyshov, D. (2016). J. Synchrotron Rad., 23, 825829.

Guillot, B. (2012). Acta Crystallogr. A, 68, s204.
Jelsch, C.; Guillot, B.; Lagoutte, A.; Lecomte, C. (2005). J. Appl. Crystallogr., 38, 38-54.
Kieffer J.; Wright, J.P. (2013). Powder Diffraction, 28 (S2), 339-350.
Macrae, C. F., I. Sovago, S. J. Cottrell, P. T. A. Galek; McCabe, P.; Pidcock, E.; Platings, M.;
Shields, G. P.; Stevens, J. S.; Towler, M. \& Wood, P. A. (2020). J. Appl. Cryst. 53, 226235.

Madsen, A. Ø. (2006). J. Appl. Cryst., 39, 757-758.
Rigaku OD (2019). Crysalis Pro V. 40 Rigaku Oxford diffraction.

Scheinost, A. C.; Claussner, J.; Exner, J.; Feig, M.; Findeisen, S.; Hennig, C.; Kvashnina, K. O.; Naudet, D.; Prieur, D.; Rossberg, A.; Schmidt, M.; Qiu, C.; Colomp, P.; Cohen, C.; Dettona, E.; Dyadkin, V.; Stumpf T. (2020). J. Synchr. Rad., 28, 333-349.

Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
Sheldrick, G. M. (2018). Acta Crystallogr. A, A71, 3-8.

