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Report: 

 

1. Abstract 

Ru(II) compounds are widely used in catalysis, photocatalysis and medical applications. They usually obtained 

in reductive environment as molecular O2 can oxidize Ru(II) to Ru(III) and Ru(IV). Here we have designed an 

air-stable surface -[bipy-Ru(II)(CO)2Cl2] site that is obtained by reduction of -[bipy-Ru(III)Cl4]- with 

simultaneous ligand exchange from Cl- to CO. The -[bipy-Ru(II)(CO)2Cl2] site enables oxidation of CO with 

a turnover frequency of 0.73  10-2  s-1 at 462 K, while the Ru(III) site is completely inert. 

 

2. Experiment details  

 

Fresh sample, sample after step 1, 2 and 3 treatment are first being meaured ex-situ, together with RuCl3, RuO2 

and NaCl as standards. Furthermore, fresh sample is measured in-situ. 1% CO and 1% O2 was introduced into 

the chamber, then the sample was heat up from room temperature to 200 °C. Ru L3 edge and Cl K edge XAFS 

were measured during heat up. Then after cooling down in the same gas condition, 1% H2 was further 

intrroduced into the chamber, the sample was then het up to 300 °C, Ru L3 edge and Cl K edge XAFS were 

measured during heat up. After cooling down to room tempertuare, the gas condition changes to 1% CO and 1% 

O2 again then heat up to 300 °C. Ru L3 edge and Cl K  edge XAFS were measured during heat up. 

 

3. Results  



 

 

The HERDF-XANES measurment use the Ru 3d to 2p emission as the fluoresence detection, which 

significantly increases the energy resolution. In this study we have three spin states: t2g
4eg0, t2g

5eg0, and t2g
6eg0. 

The RuO2 has a double features that are corresponded to 2p3/2 →4dt2g and 2p3/2 → 4deg excitation with a 

t2g
4eg0 configuration (Fig. 1a blue). RuCl3 has a t2g

5eg0 configuration. Due to the distortion in the lattice, the 

further split of the eg level leads to a broad feature that is difficult to fit (Fig. 1a, red). This is in good 

agreement with the literatue report.1 Our fresh sample -[Ru(bipy)Cl4]H has the t2g
5eg0 without any distrotion 

from the crystal. Therefore, the 2p3/2 →4dt2g and 2p3/2 → 4deg excitations are clearly visible (Fig. 1a black). 

With only one hole at t2g
5, the 2p3/2 →4dt2g has much lower probability than 2p3/2 → 4deg. The first activation 

step should form -[Ru(bipy)COCl3] species, which keeps Ru at 3+ with Cl- replaced by CO. The Ru 2p to CO 

* transition is clearly visible at 2842 eV (Fig. 1b green) is higher that than that of 2p3/2 → 4deg transition, 

which helps to confirm the relative orbital energy in Fig. 2. Interestingly, the 2p3/2 → 4dt2g has also decreased 

significantly, suggesting completely occupied t2g orbitals. This may due to the strong  bonding from the CO 

2 to 4dxy orbital. 

Moving to step 2, in which H2 is used to reduce Ru3+ to Ru2+. The Ru 2p to CO * transition decreases in 

intensity even with 2 CO ligands coordinate with the Ru2+ (Fig. 2c). 

 
Figure 1. Ex situ Ru L3 edge of a. Fresh sample b. sample after step 1 c. sample after step 2 d. sample after step 

3 with RuCl3 and RuO2 as reference.  

 

 
Figure 2. The molecular orbital diagram of -[Ru(bipy)COCl3].  

 



 

 

 

 
Figure 3. In situ Ru L3 and Cl K edge of duing a.b. step 1 treatment, c.d. step 2 treatment, e.f. step 3 treatment.   

 

Moreover, the process showed in Figure 1 was further investigate via in-situ measurement together with Cl K 

edge measurement. Fig. 3a shows the reduction of Ru starts from 373K and at 473K, the feature at 2837.7 eV 

disappears completely with the formation Ru 2p to CO * transition at 448 K, suggesting a simultaneous Ru3+ 

reduction and CO insertion. This is beyond our current knowledge as we thought step 1 is a simply ligand 

exchange reaction. The corresponded Cl K edge spectra showed a decrease in the Cl 1s to Ru 4d t2g transition, 

further confirms that CO will reduce the Ru3+ in the step 1. In step 2, H2 is introduced with another CO 

coordination to Ru. This leads to a slight blue shift of the Ru 2p to CO * transition with decreased intensity. It 

is not clear why the probability of such transition has been decreased slightly (Fig. 3b). The Cl K edge spectra 

show mainly the Cl 1s to Ru eg transition. Step 3 is the real CO oxidation environment, so both Ru and Cl do 

not change during the reaction. 

 

4. Discussion, conclusions and furture work  

The reduction of Ru(III) and the formation of cis(CO)-trans(Cl)-[Ru(bipy)(CO)2Cl2] sites has been confirmed 

by both Ru L3 edge and Cl K edge measurement. In the step 1, the ligand exchange and Ru3+ reduction take 

place at 448 K. In step 2, the further ligand exchange with the formation of HCl happens at 548 K. However, it 

is not clear why the Ru 2p to CO * transition has a blue shift when the second CO molecule is coordinated 

with Ru2+. It is also not clear what is the oxidative product for the step 1 as we do not see any CO2 formation. 

Both require further investigation. We still have the Ru core to core RIXS data that can be analyzed and reported 

in the future. Further explanation of the spectra requires careful calculations, which is sought in collaborations.  
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