\sim 0.0	Experimen
SIN	Using textu
	overlapping
	pattern

Experiment title:

Using texture to unravel the relative intensities of overlapping reflections in a zeolite powder diffraction pattern

Experiment number: 01-01-146

Beamline: BM01B	Date of experiment: from: 30-Sep-98	to:	14-Oct-98	Date of report: 31-Aug-99
Shifts:	Local contact(s): Hermann Emerich			Received at UNIL:

Names and affiliations of applicants (* indicates experimentalists):

Lynne McCusker, Lab. für Kristallographie ETHZ, Zürich Christian Bärlocher, Lab. für Kristallographie ETHZ, Zürich

- *Thomas Wessels, Lab. für Kristallographie ETHZ, Zürich
- *Simon Brenner, Lab. für Kristallographie ETHZ, Zürich

Report:

Samples of three polycrystalline materials of unknown structure, UTD-1F, IM-5 and HAlF₄, were examined during this experiment. Because the samples were of different thicknesses (and therefore had different absorption properties), intensity calibration curves were measured for two samples of untextured zeolite A with the appropriate dimensions. For each of the high-silica zeolites, UTD-1F and IM-5, 7 pole figures were measured to establish the texture, and then full diffraction patterns were collected at five different sample orientations (chosen to give maximum contrast). For HAlF₄, 6 pole figures and 4 full diffraction patterns were measured.

The texture of UTD-1F could be established from the pole figure data, and a set of near-single-crystal reflection intensities could be extracted from the five diffraction patterns (see Figure 1). The structure was determined from these intensities in the space group $P2_1/c$ (a=14.9633 Å, b=8.4704 Å, c=30.0098 Å, $\beta=102.7$ °) using direct methods.

All 16 Si atoms and 17 of the 32 O atoms were found on the initial E-map. Difference

Figure 1. (A) Pole figure data for the $10\overline{2}$ reflection and (B) small sections of the five diffraction patterns collected at the sample orientations indicated in the pole figure (Science (1999) 284, 477-479).

Fourier maps then revealed the positions of the rest of the framework O atoms and those of the $Co(Cp^*)_2$ complex in the 14-ring channel. Subsequent Rietveld refinement showed the true space group to be non-centrosymmetric (Pc) and refinement of the 349 positional parameters converged satisfactorily with $R_{wp} = 0.134$ and $R_F = 0.041$ (see Figure 2). The final structure, with 117 atoms in the asymmetric unit, displays no evidence of faulting and has a fully ordered arrangement of the Co complex.

Figure 2. Observed (top), calculated (middle) and difference (bottom) profiles ($\lambda = 0.69796 \text{ Å}$) for UTD-1F. To show more detail, the highest peak has been cut at ca 60% of its full height, and the scale for the second 2θ region has been increased by a factor of 5 (*J. Am. Chem. Soc.* (1999) 121, 6242-6247).

The data from the IM-5 sample allowed the impurity peaks in the diffraction pattern to be identified unambiguously, and this finally made a correct indexing of the peaks from the sample possible (orthorhombic, a = 14.277 Å, b = 57.369 Å, c = 20.107 Å). Although the texture could be well described, the size of the unit cell (16'000 Å³) requires that more full diffraction patterns be collected before a reliable deconvolution can be obtained.

For the HAIF, sample, the texture could also be described and a set of reflection intensities were extracted. A partial structure could be obtained, but the chemical analysis appears to be incorrect, so further analysis of the diffraction data has been temporarily suspended.