ESRF	Experiment title: Magnetic susceptibility and magnetic moments as a function of temperature and magnetic field and anisotropy of the orbital moment in Fe/V superlattices on MgO(001)	Experiment number: HE-660
Beamline: ID 12 B	Date of experiment: from: 21.6.2000 to: 27.6.2000	Date of report : 15.2.2001
Shifts: 18	Local contact(s): A. Tagliaferri, P. Ohresser	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

F. Wilhelm*, M. Farle, P. Poulopoulos*, A. Scherz*, H. Wende, and K. Baberschke Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin
P. Blomquist and R. Wäppling Department of Physics, Uppsala University, Box 530, S-75121 Uppsala, Sweden
N.B Brookes
E.S.R.F. B.P. 220, 38043 Grenoble, France

Report:

In this beamtime we recorded element-specific spectra at the Fe and V $L_{3,2}$ edges for Fe/V superlattices grown on MgO(001). Our results provided information on three separate topics (i) the Fe and induced V magnetic moments (ii) the orbital magnetism of Fe to be compared with previous Ferromagnetic Resonance (FMR) experiments [1] and (iii) the large increase of the magnetic moment at high fields and low temperatures in a Fe/V sample with very thin Fe layers, as described in our proposal. We structure our report respectively:

(i) Fe XMCD spectra are shown in Fig. 1 for 40 nm thick Fe (indicated as bulk), and Fe₄/V₂, Fe₄/V₄ and Fe₂/V₅ superlattices. The indices are numbers of atomic planes in each superlattice period. One sees that the Fe signal at the Fe₄/V₂ sample is bulk-like. When the V spacer becomes thicker the Fe XMCD decreases and this decrease is even more pronounced for the sample with the 2 at. layers of Fe. These results elucidate the behavior of Fe at the interface with V. The decrease of the Fe XMCD signal and, consequently, Fe moment is understood as a change of coordination number in a ligand field model, in agreement with theoretical predictions [2]. In Fig. 2 we show XMCD spectra from V in Fe₄/V₂. First of all, we note that the spectra quality is much higher than of previous ones recorded for V [3] due to the high photon flux and degree of circular polarization at the ID12B. The sample of Fig. 2 shows the largest degree of V polarization. Since the V L-edges overlap and the standard XMCD analysis can not be applied, we measured the total magnetization of the sample by Vibrating Sample Magnetometry and subtract the Fe magnetization. A magnetic moment of -1.3µ_B/atom was deduced for V. The negative sign indicates an antiferromagnetic alignment between Fe and V, in agreement with theory and previous experiments, see e.g. [2,3].

(ii) In Fig. 3 we present the ratio of the orbital-to-spin magnetic moments (m_L/m_S) for the Fe-bulk and four superlattices, two with 4 and two with about 2 at. layers of Fe, as indicated. One may notice that the m_L/m_S ratio does not change considerably from the bulk to the 4 at. layers. However, a large increase (by more than 200% compared to bulk) occurs by going to the samples with 2 Fe layers. This is in fair agreement

Fig. 1: Normalized XMCD spectra at the $L_{3,2}$ edges of Fe for four samples as indicated at T=10 K and H=6 T.

Fig. 2: Normalized XMCD spectra at the $L_{3,2}$ edges of V for a Fe₄V₂ superlattice.

with our previous publication based on FMR data [1]. This is the first time in the thin film literature that results from the two techniques that may provide the m_L/m_S ratio, i.e. XMCD and FMR, are compared and satisfactory agreement between them is found.

(iii) In Fig. 4 we see field- and temperature-dependent magnetization data deduced by analysis of the corresponding XMCD spectra for an $Fe_{1.6}/V_5$ superlattice on MgO(001). Previous non-element specific measurements by SQUID and FMR revealed a large increase of the total signal the origin of which could not be identified. It is only with the current element-specific measurements that an unambiguous input to this problem could be given. As shown in Fig. 4 a large field-induced increase of the Fe magnetization is recorded. The effect occurs at both 10 and 120 K. On the other, hand, the V polarization was very weak and therefore, we conclude that the effect is located at the Fe sites. The ultrathin and non-integer Fe layers of the sample could suggest a mixed ferro- and superferromagnetic type of behavior, see for example [4].

Fig. 3: The ratio m_L / m_S for Fe in bulk and four superlattices as indicated. The ratio increases by decreasing the Fe thickness.

Fig. 4: Magnetization of Fe in a $Fe_{1.6}V_5$ superlattice. An unusual approach to magnetic saturation is revealed.

Finally, the ac-susceptibility part of the proposal could not be realized due to non-perfect compensation of the stray remanent field of the 7 T magnet.

- [1] A. N. Anisimov et al., Phys. Rev. Lett. 82, 2390 (1999).
- [2] S. Mirbt et al., Phys. Rev. B55, 67 (1997).
- [3] M.M. Schwickert et al., Phys. Rev. B57, 13681 (1998).
- [4] J. Hauschild et al., Phys. Rev. B**57**, R677 (1998).