ESRF

Experiment title:

Weak itinerant magnetism in Y based alloys studied by XMCD

Experiment number: HE 749

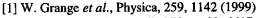
Beamline:	Date of experiment:	Date of report:
	from: 26/01/200 to: 28/01/2000 6 shifts	March 2000
Shifts:	Local contact(s):	Received at ESRE.
	A. Rogalev / Ph. Ohresser	- 1 TIM. 2000

Names and affiliations of applicants (* indicates experimentalists):

J.-P. Kappler

IPCMS

23 rue du Loess 67037 Strasbourg


4d polarisation in YFe2 Laves phase studied by XMCD

We have tested, on the ID12A beam line, the **feasibility of XMCD experiments** at low energy, around 2 keV, using the new electromagnetic undulator for an alternative polarisation measurement.

The observation of a magnetic dichroism signal (about 7% of the white line amplitude) at the $L_{2,3}$ edges of Y in the YFe₂ compound (ferromagnetic with T_C =528K) is a direct evidence of the existence of a 4d polarization on the Y sites.

Note that, as already observed in Rh- $L_{2,3}$ absorption edges, the white line presents three well resolved structures [1] and that the XMCD signal is essentially related to the lower energy structure, only a weak contribution is relative to the higher energy structures. Moreover, the asymmetric shape of the XMCD resembles to that we have already observed in 3d-Pt systems [2].

Using the sum rules, the analysis of the dichroism signal leads to a magnetic moment about $M_{4d} = -0.2\mu_B/at$ (with a value of L_z almost equal zero, see Fig. 1) coupled ferrimagnetically to the Fe-3d moment. This is very far from the polarized neutron results due to Ritter [3]: $M_Y=-0.67\mu_B$, with 20% of orbital contribution. However, our results concern the sole 4d contribution, while the polarized neutron study gives the total moment carry by the Y atoms; but we cannot believe to so huge s and p electrons contributions. New experiments are needed.

^[2] W. Grange et al., J. applied Phys., 83, 6617 (1999)

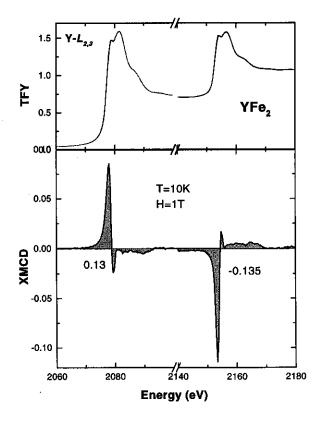


Fig. 1 TFY and XMCD at the Y- $L_{2,3}$ edges in YFe₂. Note the high quality of the spectra.

^[3] C. Ritter, J. Phys.: Condens. Matter 1, 16,; 2765 (1989)