ESRF	Experiment title: Se speciation in cement phases using XAFS	Experiment number: CH 01-01 221
Beamline:	Date of experiment:	Date of report:
BM1A	from: 08.12.2000 to: 12.12.2000	22-02-01
Shifts: 12	Local contact(s): Hermann Emerich	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		
I. Bonhoure, R. Dähn, Yan Tits, A. M. Scheidegger and E. Wieland.		
Waste Management Laboratory		

Paul Scherrer Institute, CH 5232 Villigen, Switzerland

Report:

The retardation of radionuclides through engineered cementitious barriers is a key process concerning the confinement of nuclear waste stored in future underground Swiss repositories. Thus, a mechanistic understanding of processes controlling the uptake of radionuclides in cement systems is of fundamental importance for predicting the mobility and long-term fate of radionuclides in a waste repository. Among the safety relevant radionuclides, the role of ⁷⁹Se is non-negligible given its long half-time period (1.1×10^6 years). In a hydrated highly alkaline (pH = 12-14) cementitious environment, the chemical forms of selenium are Se^{VI}O₄²⁻ and Se^{IV}O₃²⁻ anions.

We have performed Se K -edge XAFS measurements in transmission mode (reference samples) and in fluorescence mode (sorption samples) to assess the oxidation state and the chemical environment of $\text{Se}^{VI}\text{O}_4^{2-}$ and $\text{Se}^{IV}\text{O}_3^{2-}$ sorbed onto Portland cement and constitutive phases (portlandite: Ca(OH)₂, calcium silicate hydrate: (CaO)_x(SiO₂)_y(H₂O)_z and AFT: [Ca₃(Al,Fe)(OH)₆.12H₂O]₂.X₃.zH₂O) for 1 day up to 63 days. The position of the absorption edge was carefully examined to check for possible redox processes. In Figure 1 the edge positions is displayed for a set of the reference compounds and the CSH sorption samples. The Se^{VI} and Se^{IV} edge positions are well grouped and allow a clear distinction between these two formal oxidation states.

The figure reveals that the oxidation state remained unchanged upon selenium sorption except for $\text{Se}^{\text{VI}}\text{O}_4^{2-}$ sorbed on CSH for prolonged time (noted as A in Fig. 1). XANES deconvolution revealed that the samples consists of 80% Se^{VI} and 20% Se^{IV}. Complementary chemical experiments are now being undertaken to understand this reduction process.

samples (italics).

Data analysis using Feff7.02 revealed that in most sorption samples Se is in a similar structural environment as in solution. This finding is illustrated in Fig. 2 showing the pseudo-radial distribution functions (PRDF's) of Se^{VI} sorbed on portlandite and a Se^{VI}O₄²⁻ solution. Se-O distances (corresponding to peak I in Fig. 2) were found in the range of 1.69-1.70 Å for sorbed Se^{IV}O₃²⁻ (1.70 Å for Se^{IV}O₃²⁻ solution) and in the range 1.63-1.65 Å for sorbed Se^{VI}O₄²⁻ (1.64 for Se^{VI}O₄²⁻ solution), demonstrating that the rigid SeO_{3/4} units are maintained upon sorption onto cement and cement constituents. The higher R features in the PRDF's (peak II and III in Fig. 2) could be simulated with multiple scattering paths inside the SeO₄ unit of the third and fourth order, respectively. The XAFS findings are hence in favour of an outer-sphere complexation model between the rigid SeO₄ unit and portlandite. Se^{VI} sorbed onto cement shows some deviation form this behaviour and a feature at R+ R = 1.9 Å was observed which will further investigated through comparison with additional cement constitutive phases such as *AFm* (Al₂O₃-Fe₂O₃-mono, [Ca₂(Al,Fe)(OH)₆].X.zH₂O).