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Abstract
The cornea has evolved to fulfil the dua functions of enclosing and protecting the inner contents of the eye, and
focussing light onto the retinawith minimum scatter and optica degradation. It does this by means of the arrangement
of the condtituent collagen fibrils, an arrangement that is unique in connective tissues. Thisarticle reviews our current
knowledge about the detailed organisation of collagen in the corned stroma, and presents new data suggesting that a
sgnificant proportion of collagen fibrils running across the cornea, change direction near the limbus and fuse with the
crcumferentia limba collagen.
Methods
The micro-focus x-ray beamline ID-13 at the European Synchrotron Radiation Facility (ESRF, Grenoble), was used
to examine in detall the collagen fibril orientation in the find 1-2 mm of tissue before the limbus in human cornea. A
whole 68-year old norma left human cornea was used for the study. A suture made in the scleraat time of excision
marked the superior postion. Thefine-focus capability of 1D-13 enabled usto sample acircular 5 micron diameter
region of the cornea for each data point, with the x-ray exposure time per point being 20s. A trardation Stage
interfaced with the x-ray camera shutter alowed the specimen to be moved in the plane of the cornea between
exposures.. Smdl-angle diffraction patterns were recorded at 1mm intervas aong the nasal semi-meridian and aso
aong the supero-temporal semi-meridian. In addition, the final 1mm region of tissue up to the limbus aong the nasal
semi- meridian was examined a 25 micron intervas, while the fina 2 mm was examined at the same resolution on the
supero-tempora semi-meridian. The smal-angle diffraction pattern from cornea (Figure 3a) contains a well-defined
reflection deriving from the laterd short-range order of stromd collagen fibrils (see Meek and Quantock, 2001). The
fibrilsin agiven lamela scatter x-rays a right-angles to the direction of their long-axes, forming two symmetrical
diffraction maxima on the detector. A line normd to that joining the two maxima thereby indicates the fibril direction,



while ther intengty is proportiona to the number of fibrils digned in that direction. Thus from the distribution of
intengity around the reflection we can detect any preferred fibril orientation (over and above any isotropicaly
arranged collagen) and determine the relative number of fibrils oriented in any particular direction within the plane of
the cornea (Daxer and Fratzl, 1997; Newton and Meek, 1998D).

Figure 3b shows the intendity of the x-ray scattering plotted as a function of angle round the reflection. The plot
congsts of two separable components, a contribution from the isotropically aigned fibrils (shown shaded) and a
contribution from the preferentialy aigned fibrils (shown clear). The pesk postions dlow us to determine the angles
a which the preferentidly aigned fibrils are running at the point in the tissue where the x-ray pattern was obtained,
and the intensity of the pesaks above background gives a relative measure of the amount of collagen running in that
direction. By producing plots such asthisfrom al the sampling locationsindicated in Figure 2, we were thus able to
monitor the Sze and direction of the two principa fibril populations (centraly, superior-inferior and nasd-temporal)
as they change with radia distance from the centre of the cornea.

Results

Figure 4 shows how the preferred directions of the (initialy) superior-inferior and nasal-tempord fibril populations
change with radia distance from the corned certre dong the two sampling lines. Along the nasal semi-meridian, the
directions of the two populations of fibrils remain essentidly unchanged and mutualy orthogona from the centrd
cornea up to the limbus about 5mm away (Figure 4(a). However dong the supero-tempora semi-meridian (Figure
4b) thereis clearly rotation of the preferred fibril angle for the superior-inferior population in order for these fibrilsto
become tangentid at the limbus. In agreement with results obtained by Newton and Meek (19983) thisrotation
appears to occur within the corneaiin a space of 1-1.5 mm just before the limbus.

Theintengties of the peaks in the x-ray scattering plot arising from the preferentidly aigned nasa-tempora and
inferior-superior fibrils (Figure 3b) are plotted as a function of radid distance from the corned centrein Figure 5. The
data show that in both directions studied, the amount of collagen in the preferentialy aligned superior-inferior and
nasal-tempord populations remain unchanged until 3-4 mm from the corned centre and that, furthermore, the two
popul ations are comparable in magnitude over this region. However as we move further awvay from the corned

centre the amount of collagen in both populations begins to increase, the superior-inferior a afaster rate than the
nasal-temporal. By the time we reach the centre of the limbus (radia distance: 5-5.5 mm) the superior-inferior
population, which now run tangentidly, are considerably more abundant.

From the totd scattering intensity distributions for each of our sampling points we were dso able to measure the
scattering intensity due to only the isotropically arranged collagen (Figure 3) at that position in the cornea. These data
are shown in Figure 6. In both directions studied, the isotropic scatter increases near the limbus, at about the same
place that the preferentidy aigned fibril scatter increases.

Discussion

By following the angle between the two preferred orientations of the lamellae dong the nasd semi-meridian at very
closaly spaced intervals, we have shown that nasdly, thereislittle or no change in the preferred lamdlar directions
(Figure 4a). Thereisan increase in scattering from the superior-inferior lamelae just before the limbus, suggesting an
increase in the number of fibrilsin this direction at this point (Figure 59). At the nasal limbus, these are lamdlae
running tangentialy to the corneaand could arise from bending of lamellae previoudy running in other directions, or
by additiond digned materid in the peripherd corneareinforcing the fibrils from the corned centre. In the former
Stuation, the increased thickness of the periphera cornea would need to be accounted for e sawhere, possibly from
the additiona non-aigned collagen near the limbus (Figure 63). Similarly, there is no change in the direction of the
nasal-tempora fibrils (Figure 4a8). However, thesefibrils are reinforced near the limbus (Figure 5a) and bearing in
mind that this scattering comes from radid fibrils, the question arises as to where additiond radid fibrils could come



from near the edge of the cornea. We suggest that this reinforcement comes from fibrils that have curved into the
nasal-tempora direction from elsewhere.

In the supero-temporal semi-meridian, there is dso no change in the direction of the nasal-tempord fibrils (Figure
4b), but they are reinforced by other fibrils (Figure 5b). Again, this suggests that lamellae have curved to reinforce the
nasal-tempord fibrils near the limbus. But the most striking observation is that the angle of the superior-inferior fibrils
changes gradudly when gpproaching the supero-tempora limbus (Figure 4b). Thisis perhgps the most compelling
evidence that these lamellae must curve to become tangentid at the limbus.

The data we have presented here help to explain how the predominantly orthogond fibrils of the central cornea might
integrate with those in the circum-corneal annulus, by reducing the problem to a consideration of the numbers and
directions of the three principa centrd fibril populations. superior-inferior, nasa-tempora and isotropic. While clearly
thisisa somewhat smplistic view of the cornea, based on the current data, it seems very unlikdly that the limbal
annulus consgts of a separate population of tangentid/circular fibrils (Figures 1aand 1b). Such a scenario would
show up as amuch more abrupt, discontinuous change in fibril dignment near the limbus. Furthermore, it is difficult to
explan the renforcement of the nasd-tempord lamellae as we gpproach the limbus using a modd where lamellae do
not change direction. So, even though our measurements do not follow the individud fibrilslamellage, our datacan
best be understood in terms of a combination of lamellae bending just before the limbus (Figure 1d) and additional
collagen anchored in the sclera crossing the periphera cornea— at least some of which mugt follow a curved path
(Figure 1¢). This bending could be achieved by a combination of lamdlae splitting and then fusing with lamellae
running at a different angle, as suggested by the work of Radner et a. (1998). However, our data aso indicate that
there is some difference in the trangtion from cornea to sclera depending on which part of the limbusis being
examined (compare Figures 5a and 5b), so the manner of integration is not circularly symmetrica as shown in Figure
1

The collagen in the cornea plays an important role both at the microscopic level, where it dlows the tissue to maintain
its transparency, and aso at the macroscopic level, where it confers shape and strength. At the microscopic level we
gtill do not know the precise manner in which collagen molecules pack together to form fibrils, how many
intermediate levels there are in the structura heirarchy and how different collagens associate with each other and with
other matrix components. Similarly, questions remain at the macroscopic leve. Clearly, the precise manner in which
the corneg, limbus and sclera fuse is complex and far from understood. However, from detailed studies such as
those described here, we intend to examine other positions around the cornea, and to investigate how lamellae in the
periphera corneaand limbus are arranged as a function of tissue depth.
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Figurel

Schematic diagrams showing four possible arrangements of the integration between the preferentidly aigned collagen
(lamellag) in the central human cornea (inferior-superior and nasa-tempord) and in the limbus (tangentid). 1n (a)
there are two separate populations of fibrils, with the limbd fibrils forming a discrete annulus.  In (b) and (c) the
collagen at the limbus forms an anchoring network by either running across the limbus tangentidly (b) or curving in
and out of the limbus (c). In (d) the collagen in the cornea bends near the periphery to form acircular annulus a the
limbus.

Figure 2
Pogtion of micro-focus x-ray sampling lines with respect to the cornea (posterior face shown).

Figure3

(@ The amdl-angle diffraction pattern from centra human cornea features four orthogond intensity pesks, indicating
two predominant fibril populaions running superior-inferior and nasa-tempord. (b) Shows total scattered x-ray
intengty plotted as a function of angle round the interfibrillar reflection. Scattering may be divided into two separate
components: an isotropic component arisng from collagen fibrils occuring equaly in al directions, and a component
deriving entirdy from preferentidly aigned fibrils

Figure4

(a) Preferred direction of (centraly) superior-inferior and nasa tempord fibril populations as a function of distance
from the cornedl centre dong the nasal semi-meridian. (b) Corresponding data for the supero-tempora semi-
meridian. We have estimated the maximum error in our absolute radid position on the corneato be +/- 0.5mm.

Figure5

(&) Aligned pesk scettering intendity vaue for (centrally) superior-inferior and nasdl-tempord fibril populaions as a
function of distance from the corned centre dong the nasad semi-meridian. (b) Corresponding data for the supero-
tempora semi-meridian.

Figure 6
(a) Isotropic collagen scattering intengity as afunction of distance from the cornedl centre dong the nasal semi-
meridian. (b) Corresponding data for the supero-tempora semi-meridian.
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Figure 6

Radial distance from corneal centre (mm)









