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Abstract 
The cornea has evolved to fulfil the dual functions of enclosing and protecting the inner contents of the eye, and 
focussing light onto the retina with minimum scatter and optical degradation.  It does this by means of the arrangement 
of the constituent collagen fibrils, an arrangement  that is unique in connective tissues.  This article reviews our current 
knowledge about the detailed organisation of collagen in the corneal stroma, and presents new data suggesting that a 
significant proportion of collagen fibrils running across the cornea, change direction near the limbus and fuse with the 
circumferential limbal collagen. 
Methods 
The micro-focus x-ray beamline ID-13 at the European Synchrotron Radiation Facility (ESRF, Grenoble), was used 
to examine in detail the collagen fibril orientation in the final 1-2 mm of tissue before the limbus in human cornea. A 
whole 68-year old normal left human cornea was used for the study. A suture made in the sclera at time of excision 
marked the superior position.  The fine-focus capability of ID-13 enabled us to sample a circular 5 micron diameter 
region of the cornea for each data point, with the x-ray exposure time per point being 20s. A translation stage 
interfaced with the x-ray camera shutter allowed the specimen to be moved in the plane of the cornea between 
exposures.. Small-angle diffraction patterns were recorded at 1mm intervals along the nasal semi-meridian and also 
along the supero-temporal semi-meridian. In addition, the final 1mm region of tissue up to the limbus along the nasal 
semi-meridian was examined at 25 micron intervals, while the final 2 mm was examined at the same resolution on the 
supero-temporal semi-meridian. The small-angle diffraction pattern from cornea (Figure 3a) contains a well-defined 
reflection deriving from the lateral short-range order of stromal collagen fibrils (see Meek and Quantock, 2001). The 
fibrils in a given lamella scatter x-rays at right-angles to the direction of their long-axes, forming two symmetrical 
diffraction maxima on the detector. A line normal to that joining the two maxima thereby indicates the fibril direction, 



 

while their intensity is proportional to the number of fibrils aligned in that direction. Thus from the distribution of 
intensity around the reflection we can detect any preferred fibril orientation (over and above any isotropically 
arranged collagen) and determine the relative number of fibrils oriented in any particular direction within the plane of 
the cornea (Daxer and Fratzl, 1997; Newton and Meek, 1998b). 
Figure 3b shows the intensity of the x-ray scattering plotted as a function of angle round the reflection.  The plot 
consists of two separable components, a contribution from the isotropically aligned fibrils (shown shaded) and a 
contribution from the preferentially aligned fibrils (shown clear). The peak positions allow us to determine the angles 
at which the preferentially aligned fibrils are running at the point in the tissue where the x-ray pattern was obtained, 
and the intensity of the peaks above background gives a relative measure of the amount of collagen running in that 
direction. By producing plots such as this from all the sampling locations indicated in Figure 2, we were thus able to 
monitor the size and direction of the two principal fibril populations (centrally, superior-inferior and nasal-temporal) 
as they change with radial distance from the centre of the cornea.  
 
 
 
Results 
Figure 4 shows how the preferred directions of the (initially) superior-inferior and nasal-temporal fibril populations 
change with radial distance from the corneal centre along the two sampling lines. Along the nasal semi-meridian, the 
directions of the two populations of fibrils remain essentially unchanged and mutually orthogonal from the central 
cornea up to the limbus about 5mm away (Figure 4(a). However along the supero-temporal semi-meridian (Figure 
4b) there is clearly rotation of the preferred fibril angle for the superior-inferior population in order for these fibrils to 
become tangential at the limbus. In agreement with results obtained by Newton and Meek (1998a) this rotation 
appears to occur within the cornea in a space of 1-1.5 mm just before the limbus. 
 
The intensities of the peaks in the x-ray scattering plot arising from the preferentially aligned nasal-temporal and 
inferior-superior fibrils (Figure 3b) are plotted as a function of radial distance from the corneal centre in Figure 5. The 
data show that in both directions studied, the amount of collagen in the preferentially aligned superior-inferior and 
nasal-temporal populations remain unchanged until 3-4 mm from the corneal centre and that, furthermore, the two 
populations are comparable in magnitude over this region. However as we move further away from the corneal 
centre the amount of collagen in both populations begins to increase, the superior-inferior at a faster rate than the 
nasal-temporal. By the time we reach the centre of the limbus (radial distance: 5-5.5 mm) the superior-inferior 
population, which now run tangentially, are considerably more abundant.  
 
From the total scattering intensity distributions for each of our sampling points we were also able to measure the 
scattering intensity due to only the isotropically arranged collagen (Figure 3) at that position in the cornea. These data 
are shown in Figure 6. In both directions studied, the isotropic scatter increases near the limbus, at about the same 
place that the preferentialy aligned fibril scatter increases. 
  
 
Discussion 
By following the angle between the two preferred orientations of the lamellae along the nasal semi-meridian at very 
closely spaced intervals, we have shown that nasally, there is little or no change in the preferred lamellar directions 
(Figure 4a).  There is an increase in scattering from the superior-inferior lamellae just before the limbus, suggesting an 
increase in the number of fibrils in this direction at this point (Figure 5a).  At the nasal limbus, these are lamellae 
running tangentially to the cornea and could arise from bending of lamellae previously running in other directions, or 
by additional aligned material in the peripheral cornea reinforcing the fibrils from the corneal centre. In the former 
situation, the increased thickness of the peripheral cornea would need to be accounted for elsewhere, possibly from 
the additional non-aligned collagen near the limbus (Figure 6a).  Similarly, there is no change in the direction of the 
nasal-temporal fibrils (Figure 4a).  However, these fibrils are reinforced near the limbus (Figure 5a) and bearing in 
mind that this scattering comes from radial fibrils, the question arises as to where additional radial fibrils could come 



 

from near the edge of the cornea. We suggest that this reinforcement comes from fibrils that have curved into the 
nasal-temporal direction from elsewhere. 
 
In the supero-temporal semi-meridian, there is also no change in the direction of the nasal-temporal fibrils (Figure 
4b), but they are reinforced by other fibrils (Figure 5b). Again, this suggests that lamellae have curved to reinforce the 
nasal-temporal fibrils near the limbus.  But the most striking observation is that the angle of the superior-inferior fibrils 
changes gradually when approaching the supero-temporal limbus (Figure 4b).  This is perhaps the most compelling 
evidence that these lamellae must curve to become tangential at the limbus. 
 
The data we have presented here help to explain how the predominantly orthogonal fibrils of the central cornea might 
integrate with those in the circum-corneal annulus, by reducing the problem to a consideration of the numbers and 
directions of the three principal central fibril populations: superior-inferior, nasal-temporal and isotropic. While clearly 
this is a somewhat simplistic view of the cornea, based on the current data, it seems very unlikely that the limbal 
annulus consists of a separate population of tangential/circular fibrils (Figures 1a and 1b).  Such a scenario would 
show up as a much more abrupt, discontinuous change in fibril alignment near the limbus. Furthermore, it is difficult to 
explain the reinforcement of the nasal-temporal lamellae as we approach the limbus using a model where lamellae do 
not change direction.  So, even though our measurements do not follow the individual fibrils/lamellae, our data can 
best be understood in terms of a combination of lamellae bending just before the limbus (Figure 1d) and additional 
collagen anchored in the sclera crossing the peripheral cornea – at least some of which must follow a curved path 
(Figure 1c).  This bending could be achieved by a combination of lamellae splitting and then fusing with lamellae 
running at a different angle, as suggested by the work of Radner et al. (1998).  However, our data also indicate that 
there is some difference in the transition from cornea to sclera depending on which part of the limbus is being 
examined (compare Figures 5a and 5b), so the manner of integration is not circularly symmetrical as shown in Figure 
1.  
 
The collagen in the cornea plays an important role both at the microscopic level, where it allows the tissue to maintain 
its transparency, and also at the macroscopic level, where it confers shape and strength.  At the microscopic level we 
still do not know the precise manner in which collagen molecules pack together to form fibrils, how many 
intermediate levels there are in the structural heirarchy and how different collagens associate with each other and with 
other matrix components. Similarly, questions remain at the macroscopic level. Clearly, the precise manner in which 
the cornea, limbus and sclera fuse is complex and far from understood.  However, from detailed studies such as 
those described here, we intend to examine other positions around the cornea, and to investigate how lamellae in the 
peripheral cornea and limbus are arranged as a function of tissue depth. 
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Figure 1 
Schematic diagrams showing four possible arrangements of the integration between the preferentially aligned collagen 
(lamellae) in the central human cornea (inferior-superior and nasal-temporal) and in the limbus (tangential).  In (a) 
there are two separate populations of fibrils, with the limbal fibrils forming a discrete annulus.  In (b) and (c) the 
collagen at the limbus forms an anchoring network by either running across the limbus tangentially (b) or curving in 
and out of the limbus (c).  In (d) the collagen in the cornea bends near the periphery to form a circular annulus at the 
limbus. 
 
Figure 2 
Position of micro-focus x-ray sampling lines with respect to the cornea (posterior face shown). 
 
Figure 3 
(a) The small-angle diffraction pattern from central human cornea features four orthogonal intensity peaks, indicating 
two predominant fibril populations running superior-inferior and nasal-temporal. (b) Shows total scattered x-ray 
intensity plotted as a function of angle round the interfibrillar reflection. Scattering may be divided into two separate 
components: an isotropic component arising from collagen fibrils occuring equally in all directions, and a component 
deriving entirely from preferentially aligned fibrils.          
 
Figure 4 
(a) Preferred direction of (centrally) superior-inferior and nasal temporal fibril populations as a function of distance 
from the corneal centre along the nasal semi-meridian. (b) Corresponding data for the supero-temporal semi-
meridian. We have estimated the maximum error in our absolute radial position on the cornea to be +/- 0.5mm. 
 
Figure 5 
(a) Aligned peak scattering intensity value for (centrally) superior-inferior and nasal-temporal fibril populations as a 
function of distance from the corneal centre along the nasal semi-meridian. (b) Corresponding data for the supero-
temporal semi-meridian. 
 
Figure 6 
(a) Isotropic collagen scattering intensity as a function of distance from the corneal centre along the nasal semi-
meridian. (b) Corresponding data for the supero-temporal semi-meridian. 
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