ESRF	Experiment title: Structure determination of Epsilon toxin of Clostridium perfringens	Experiment number: LS1810
Beamline:	Date of experiment:	Date of report:
ID14 EH1	from: 01.02.01 to: 02.2.01	27.02.01
Shifts:	Local contact(s):	Received at ESRF:
1	Dr. Stephanie Arzt	
Names and	affiliations of applicants (* indicates experimentalists):	
Ajit K. Basak	*, Christine Slingsby.	
Depart of Cry	ystallography,	
Birkbeck Col	lege,	
Malet Street,		
London WC1	E 7HX,	
UK		

Report:

Crystallins are intercellular structural proteins which form transparent body of the vertebrate eye lens. All lenses comprise representatives of the three major classes, α -, β - and γ -crystallins, although a growing number of metabollically related proteins have been found to be over-expressed in lenses of certain lineages, such as δ -crystallin in the avian lens. α -crystallins, which also functions as small heat-shock proteins are expressed in many other tissues whereas the $\beta\gamma$ -crystallin superfamily has so far only been found in the vertebrate lens. Of the γ -crystallin, there exists five to seven different gene products depending on the species and are differentially expressed during development of adult lens. Recently the human γ D-crystallin has been cloned, sequenced and expressed in E. coli and subsequently purified for crystallographic work.

We crystallised and collected a native data set of this protein to 1.9 Å resolution. The structure solution is now in progress.

	Native
Space group	$P2_12_12_1$
Diffraction Limit (Å)	1.92
Rmerge (%)	7.7 (10.6% in 2.0-1.92 Å shell)
I/sd	6.4 (5.5)

Comp (%) 99.2 (99.1) Mult (%) 7.1 (6.8)