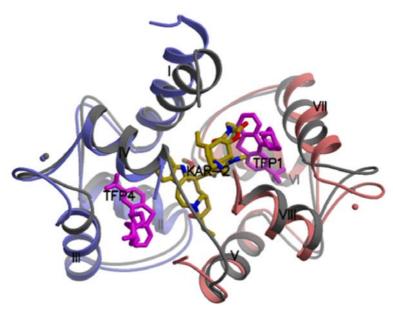
	Experiment title:	Experiment
ESRF	Protein function in the light of conformational changes caused by Ca ²⁺ -binding: Physarum polycephalum myosin RD and drug binding by calmodulin	number: LS 1885
Beamline: ID 29	Date of experiment : from: 20 / 04 / 2000 to: 21 / 04 / 2001	Date of report : 28 / 02 / 2007
Shifts:	Local contact(s): G. Leonard	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

V. Harmat*, O. Barabas*, A. Gellert*

Lorand Eotvos University, Department of Theoretical Chemistry, Budapest

Report:


Aim: The experiment was a continuation of our previous project (LS 1756).

The Structure of the Complex of Calmodulin with KAR-2 [1]

3-(β '-Chloroethyl)-2',4'-dioxo-3,5'-spiro-oxazolidino-4-deacetoxyvinblastine (KAR-2) is a potent antimicrotubular agent that arrests mitosis in cancer cells without significant toxic side effects. In this study we demonstrate that in addition to targeting microtubules, KAR-2 also binds calmodulin, thereby countering the antagonistic effects of trifluoperazine. To determine the basis of both properties of KAR-2, the three-dimensional structure of its complex with Ca^{2+} - calmodulin has been characterized both in solution using NMR and when crystallized using X-ray diffraction.

Heterocorrelation (¹H-¹⁵N heteronuclear single quantum coherence) spectra of ¹⁵N-labeled calmodulin indicate a global conformation change (closure) of the protein upon its binding to KAR-2. The crystal structure at 2.12 Å resolution reveals a more complete picture; KAR-2 binds to a novel structure created by amino acid residues of both the N- and C-terminal domains of calmodulin (Figure 1). Although first detected by X-ray diffraction of the crystallized ternary complex, this conformational change is consistent with its solution structure as characterized by NMR spectroscopy.

It is noteworthy that a similar tertiary complex forms when calmodulin binds KAR-2 as when it binds trifluoperazine, even though the two ligands contact (for the most part) different amino acid residues. These observations explain the specificity of KAR-2 as an antimicrotubular agent; the drug interacts with a novel drug binding domain on calmodulin. Consequently, KAR-2 does not prevent calmodulin from binding most of its physiological targets.

Figure 1. KAR-2 and TFP bind to different binding sites of calmodulin. Superposition of calmodulin-KAR-2 and calmodulin-4TFP complex. Helices of calmodulin are numbered, N-terminal domain blue, C-terminal domain red.

References:

Horvath I, Harmat V, Perczel A, Palfi V, Nyitray L, Nagy A, Hlavanda E, Naray-Szabo G, Ovadi J. "The structure of the complex of calmodulin with KAR-2: a novel mode of binding explains the unique pharmacology of the drug."

JBC. 280:8266-74. (2005)