SN BL	Experiment title: Study of ferryl myoglobin as model for high valent activated oxygen complexes of heme proteins and a with unusual EPR spectrum + Studies of substrate-bound forms of methane monooxygenase	Experiment number: 1-02-311 1-02-312
Beamline: BM01A	Date of experiment: from: 07-Sept-01 7:00 to: 11-Sept-01 07:00	Date of report: 30-Sept-01
Shifts: 12	Local contact(s): Dr. Jon Are BEUKES	Received at UNIL:

Names and affiliations of applicants (* indicates experimentalists):

Prof. K. Kristoffer Andersson, Department of Biochemistry, Univ. of Oslo, Norway

Prof. Carl Henrik Gørbitz, Dr. Solveig Karlsen*, Dr. Bjørn Dalhus* and Cand. Sci. Hans-Petter Hersleth*, Department of Chemistry, Univ. of Oslo, Cand. Sci. Kari R. Strand, Department of Biochemistry, Univ. of Oslo, Norway

1) We obtained data of myoglobin at different pH and incubation time, see Table of complete sets obtained. The beam was very good for **this group** and overall quality of data good as summarized:

We got three data full (one bad) sets of myoglobin.

	Resolution	R _{merge}	Completeness	R_{work}/R_{free}
	Å	%	%	%
pH 5.2 - native (good)	25 -1.35	6.1	82.5	
pH 5.2 – native (bad)	1.40	can no	ot integrate	
pH 6.8 - 5 min with t-butyl-				
hydrogenperoksid	25- 1.35 Å –	4.6% -	96.5%	

We did not get any crystals of methane monooxygenase.

Investigation of malat dehydrogenases (MDH) from Thermophilic bacteria

Two data set of a single site mutant (T187C) native crystal and a crystal soaked with Cd^{2+} of the MDH-gene from the green gliding thermophilic *Chloroflexus Aurantiacus* were collected to 1.8 and 2.1 Å resolution. Probably, at least one of the dataset should be possible to process. This very interesting mutant with an engineered disulphide bond.

Investigation of the dinuclear iron site of the R2 subunit of Mouse Ribonucleotide Reductase (RNR)

5 full data sets were collected during the time allocated for experiments:

Data set 1: Diferrous form of R2

R2 crystals were soaked for about 3 hours in mother liquid containing 5 mM Fe^{2+} and 2 mM ascorbate to prevent oxidation. The crystals were flash-frozen in liquid nitrogen.

Data set 2: Diferric form of R2

R2 crystals were soaked for about 3 hours in mother liquid with 5 mM Fe²⁺ and 2 mM ascorbate to prevent oxidation. Crystals were transferred to cryosolution containing 20 mM H_2O_2 and flash-frozen after 30 seconds.

Data set 3: Diferrous form of R2 with azide

R2 crystals were soaked for about 3 hours in mother liquid with 5 mM Fe^{2+} and 2 mM ascorbate to prevent oxidation. Crystals were transferred to cryosolution with 100 mM NaN₃ and flash-frozen after 30 seconds.

Data set 4: Mn³⁺ form of R2

R2 crystals were soaked for about 3 hours in mother liquid with 5 mM Mn^{2+} and 2 mM ascorbate to prevent oxidation. Crystals were transferred to cryosolution containing 20 mM H_2O_2 and flash frozen after 30 seconds.

<u>Data set 5</u>: Mn^{2+} form of R2 with azide

R2 crystals were soaked for about 3 hours in mother liquid with 5 mM Mn^{2+} and 2 mM ascorbate to prevent oxidation. Crystals were transferred to cryosolution containing 100 mM NaN_3 and flash frozen after 30 seconds.

4 of the 5 data sets are now processed and a summary is seen in Table 1. Refinements and map interpretations are in progress. Hopefully, the manganese and iron complexes of R2 may serve as models for the dinuclear iron site of the R2 subunit of RNR in higher organisms and other iron-oxygen proteins.

Refinements and map interpretations are in progress. Hopefully, the manganese and iron complexes of R2 may serve as models for the dinuclear iron site of the R2 subunit of RNR in higher organisms and other iron-oxygen proteins.

	Data set 1	Data set 2	Data set 3	Data set 4	Data set 5
	R2-Fe(II)	R2 –	R2-Fe(II)-	R2-	R2-
		Fe(III)	azid	Mn(III)	Mn(II)-
					azid
Cell dim.	76.09	75.78	76.07	76.67	
(Å)	107.47	106.42	107.43	107.07	
	91.83	91.44	91.90	91.96	
Resolution	2.4	1.7	2.4	2.4	2.2
(Å)					
No. of	13 956	36 387	13 419	14 131	
reflection					
Completene	94.0 %		89.2 %	94.3 %	
SS					
R _{merge} (%)	11.9	6.1	12.6	7.3	

Table 1: Data collection statistics (Space group C222₁)

Related publications and presentations:

Hersleth, HP., B.	An Iron-Hydroxide	J. Biol. Inorg. Chem.
Dalhus, C. H. Görbitz and	Moiety in the 1.35 Å	
K. K. Andersson	Resolution Structure of	
	Hydrogen Peroxide	
	Derived Myoglobin	
	Compound II at pH 5.2	
	Nr./Vol./År:	ISSN:
Full paper, in press	(2001)	0949-8257

Hersleth, HP., B.	Compound II in	J. Inorg. Biochem.
Dalhus, C. H. Görbitz and	Peroxidases: New	_
K. K. Andersson	Resonance Forms	
	Suggested by pH	
	Dependent Structures of	
	Myoglobin Intermediates	
	Formed by Oxidation	
	with Peroxides.	
page	Vol./År:	ISSN:
260	260 (2001)	0162-0134

Hersleth, HP., B. Dalhus, C. H. Görbitz and K. K. Andersson	Structure of the myoglobin intermediate Compound II formed by reaction with hydrogenperoxide	17th Nordic Structural Chemistry Meeting, 7th - 10th January 2001, Århus, Denmark, p14
Hersleth, HP., B. Dalhus, C. H. Görbitz and K. K. Andersson	Structure of the myoglobin intermediate Compound II formed by reaction with hydrogenperoxide	Brukermøte norsk synkrotronforskning, 18 19. januar 2001, Gardermoen, Norge

Hersleth, HP., B. Dalhus, C. H. Görbitz and K. K. Andersson	Compound II in Peroxidases obtained from hydrogen peroxide incubation with	The 37th Norwegian Biochemical Society Meeting at Bieto, January 18-21, SL5
	Myoglobin at different pH	
Hersleth, HP., B.	The Structure of the	NorFA Research
Dalhus, C. H. Görbitz and	Myoglobin Comopound	Training Course:
K. K. Andersson	II Intermediate Formed	Application of X-ray
	by Reaction with	Synchrotron Radiation In
	Hydrogen Peroxide	Chemistry, Biology and
		Physics, 24th June - 1
		July 2001, Sønderborg,
		Denmark., (poster)

Karlsen, S., K.R. Strand,	Binding of Co(II) and	NorFA Research
and K. K. Andersson	Mn(II) to R2 from mouse	Training Course:
	Ribonucleotide Reductase	Application of X-ray
	(RNR)	Synchrotron Radiation In
		Chemistry, Biology and
		Physics, 24th June - 1
		July 2001, Sønderborg,
		Denmark, (poster)