SN BL	Experiment title: Structural characterisation of intermetallic compounds and metal hydrides by powder diffraction.	Experiment number: 01-01-247
Beamline:	Date of experiment:	Date of report:
BM01B	from: 5-apr-01 to: 10-apr-01	30-sept-01
Shifts:	Local contact(s):	Received at UNIL:
15	Wouter VAN BEEK	
Rade Klau	ffiliations of applicants (* indicates experimentalists): ovan Černý is Yvon re Guénée	
Uni 24,	oratoire de Cristallographie versité de Genève quai Ernest-Ansermet ·1211 Genève 4, Suisse	

About twenty powder patterns (samples from projects INTAS and FNS) were succesfully acquired during 15 shifts. Here we give a short report on succesfully analyzed patterns and refined crystal structures.

Oxygen stabilized intermetallic compounds and their hydrides:

purities
H_3 , ZrO_2
ZrO_2

 κ -phases with composition $A_{9}B_{4}X_{y}$ (A = Zr, Hf; B = V, Mo, W, Re; X = B, P, S):

Compound	space group	lattice parameters [Å]	impurities
Zr ₉ Mo ₄ S	$P6_3/mmc$	<i>a</i> =8.7371(4), <i>c</i> =8.6351(4)	ZrN, ZrO, β -Zr, Mo, ZrMo ₂
Zr_9V_4S	$P6_3/mmc$	<i>a</i> =8.6380(5), <i>c</i> =8.5668(6)	ZrN
Zr ₉ Mo ₄ Fe	$P6_3/mmc$	a=9.0526(2), c=8.9792(4)	ZrO_2 , Mo, $ZrMo_2$

*CsMgH*_x: *Pmmn*, *a*=9.9958(1), *b*=6.13271(6), *c*=8.57364(9)

atom	x	у	Z	$B[\text{\AA}^2]$
Cs1	1/4	1/4	0.1796(4)	1.83(4)
Cs2	0.4737(2)) 1/4	0.6645(3)	$B_{\rm Cs1}$
Mg1	1/4	3/4	0.642(2)	1.6(2)
Mg2	0.614(1)	1/4	0.077(1)	$B_{ m Mg1}$

Ternary intermetallic compounds of type AB_5 and their hydrides:

Compound	space group	lattice parameters [Å]	impurities
LaNi ₂ Mn ₃	P 6/mmm	<i>a</i> =9.2118(2), <i>c</i> =4.1862(1)	Mn
$LaNi_2Mn_3H_x$	P 6/mmm	<i>a</i> =9.8952(3), <i>c</i> =4.3062(2)	LaNi ₂ Mn ₃ , Mn
NdNi ₄ Mg	<i>F</i> -43 <i>m</i>	<i>a</i> =7.09874(4)	NdNi ₃
NdNi ₄ MgH _x	$Pmn2_1$	a=5.0795(4), b=5.4893(4), c=7.3846(5)	NdNi ₄ Mg, NdNi ₃

Positions of metal atoms in the new compound $CsMgH_x$ and in two new hydrides of the compounds of type AB₅, as determined here, will serve as starting model for determination of the hydrogen(deuterium) positions by neutron diffraction.

Phase analysis of samples with nominal composition Gd_2Fe_{17} :

Sample	main phases	lattice parameters [Å]
Gd_2Fe_{17} - not annealled	GdFe _{9.31} (LuFe _{9.5} -type, <i>P</i> 6 ₃ / <i>mmc</i>)	<i>a</i> =8.4998(1), <i>c</i> =8.3406(1)
	$GdFe_{8.62}$ (PrFe ₇ -type, <i>R</i> -3 <i>m</i>)	<i>a</i> =8.5382(1), <i>c</i> =12.4389(2)
Gd_2Fe_{17} - annealled 900° C	GdFe _{9.00} (TbCu ₇ -type, <i>P6/mmm</i>)	<i>a</i> =4.9098(1), <i>c</i> =4.1683(1)
	$GdFe_{8.80}$ (PrFe ₇ -type, <i>R</i> -3 <i>m</i>)	<i>a</i> =8.5415(1), <i>c</i> =12.4387(3)
Gd_2Fe_{17} - annealled 1050° C	$C GdFe_{8.35} (PrFe_7 -type, R-3m)$	<i>a</i> =8.5428(1), <i>c</i> =12.4358(1)
	Fe (<i>Im</i> 3 <i>m</i>)	<i>a</i> =2.8673(1)

Structural data of high precision obtained in this experiment will be used in modeling the stability of phases with the above mentioned three structure types, which were observed in the Yb-Fe-Al system during our previous studies.

Preliminary test of the hydrogen induced anisotropic line broadening in compounds of type AB_2 :

Compound	space group	lattice parameters [Å]
$Ti(Mn,V,Ni)_2$ - not cycled and cycled	$P6_3/mmc$	a=4.9429, c=8.0417
$Zr(Mn,V,Ni)_2$ - not cycled and cycled	Fd3m	a=7.0613

These preliminary tests show that the anisotropy of the line broadening induced by the hydrogenation is lower than in the hexagonal compounds AB₅, like LaNi₅. More systematic experiments are planned to understand the effect.