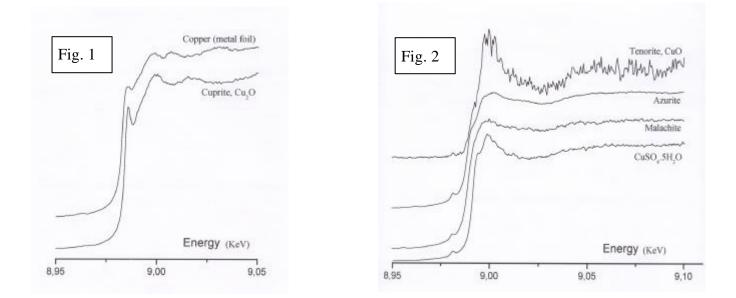
ESRF	Experiment title: Micromapping and speciation of copper and tin in archaeologic tubular multilayered glass beads	Experiment number: ME-324
Beamline:	Date of experiment:	Date of report:
ID22	from: 01.09.01 to: 04.09.01	08.02.02
Shifts:	Local contact(s):	Received at ESRF:
9	Drs. Sylvain Bohic and Andrea Somogyi	
Names and affiliations of applicants (* indicates experimentalists):		
M.O. Figueiredo*, Cryst. Miner. Centre / IICT & CENIMAT, Materials Science Dept., New University of Lisbon (UNL), Caparica, Potrtugal.		
J.P. Veiga*, CENIMAT, Materials Science Dept., New University of Lisbon (UNL), Caparica, Portugal.		
J. Mirão*, Geosciences Dept., University of Évora, Portugal.		

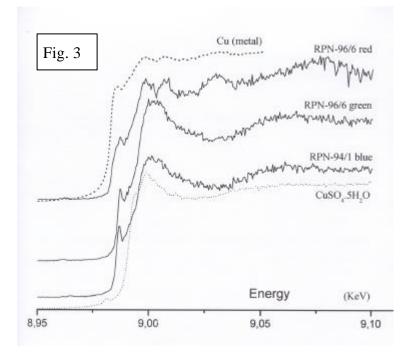
Report:


The experiment had a double purpose: first, to ascertain the *speciation* and the *coordination* assumed by *copper in ancient lead-rich glass beads* displaying *red, green, blue colourings*; second, to study the *topochemistry of tin vs. lead* across the consecutive blue and white layers in archaeologic glass beads of Nueva-Cadiz type.

Studied tubular beads were 2-5cm long and had square or round cross-sections (area ~1cm²).

The Bragg-Fresnel optics of *ID22 microprobe* assured the focusing of the monochromatic beam to a suitable spot size (~0.05mm) on the bead, therefore allowing for a separate analysis of the several constituting layers - five or three, depending on the bead type.

The following minerals/compounds were used to model copper speciation in the formal valences (0, 1+, 2+) and different *binding*: a copper *metal foil*, Cu⁰; the blue compound CuSO₄.5H₂O (Cu²⁺ in octahedral coordination by four oxygen atoms from water molecules and two from sulphate ions); the oxide minerals *tenorite* (CuO, with Cu²⁺ in square coordination and O-atoms tetrahedrally surrounded by four copper atoms) and *cuprite* (Cu₂O, also a framework of [O^tCu₄] tetrahedra, now with Cu⁺ in linear coordination), and the natural carbonates *azurite*, Cu₃(OH)₂(CO₃)₂, and *malachite*, Cu₂(OH)₂(CO₃), both with Cu²⁺ in square coordination by two water molecules and two oxygen atoms from carbonate ions.


XANES spectra of **Cu** *K*-edge collected from the metal and Cu₂O are reproduced in fig. 1. Despite the poor quality of data from CuO (fig. 2), the *pre-edge peak* is common to all spectra from minerals and a model compound for Cu(2+) and *details at the ramp and post-edge* arising from different anionic environments are clearly perceptible. Spectra from *glass beads* (fig. 3) clearly support the suggestion of *metallic clusters as colouring agents in red*

layers [1]. The energy shift of the pre-peak in the glass compares well with Cu^0 in the metal and with Cu(1+) linearly bonded to two oxygen atoms in cuprite, being therefore indicative of an atomic environment differing much from the ionic situations. *Ab initio* calculations using the FEFF8.10 code [2] are in progress to interpret and model Cu *K*-edge absorption spectra collected from red-, gree- and blue-coloured ancient glass beads.

Topochemical mappings of *Sn vs. Pb* in white and blue layers of Nueva-Cadiz type glass beads are still being performed using the software "xplot".

- [1] I. NAKAI *et al.* (1999). Origin of the red color of satsuma copper-ruby glass as determined by EXAFS and optical absorption spectroscopy. *J. Amer. Ceramic Soc.* <u>82</u> 689-695.
- [2] A. ANKUDINOV, B. RAVEL & J. REHER (2000). Manual of FEFF8.10 program. The FEFF Project. Dept. Phys., Univ. Washington, Seattle, USA, 62 p.

