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Report:
Introduction
Iron-zeolites attracted much attention for the removal of NOx and/or N2O from exhaust streams in the last
years. In contrast to other materials, the iron catalysts do not seem to deactivate in the presence of water and
SO2, which are always present in a real exhaust gas. There has been much discussion about the nature of the
active species in iron-zeolites. Binuclear iron complexes, small iron clusters (on the order of a few nm) and
also isolated iron ions were proposed to be the active sites. In many cases these conclusions were based on
the activity of the catalysts in the selective catalytic reduction (SCR) of NOx with hydrocarbons. SCR is,
however, not a very suited reaction to probe the intrinsic activity of the iron species. Factors like acid site
density, diffusion of the hydrocarbon and coke formation play a big role, and may screen the actual role of
the iron. 
N2O decomposition is a much more suited reaction for probing the activity of the iron species. It is a clean
reaction leading to N2 and O2, with no side products and it runs exclusively on the iron-species. The pure
zeolite has no or very little activity (this small activity is, in fact, often due to impurities of iron in the
framework).
The aim of our work was to shed more light on the interaction of the iron catalyst with N2O. The structural
changes of the iron sites upon interaction with N2O were probed by EXAFS and XANES. In situ XANES
measurements were performed to measure the rate of oxidation of the iron sites by N2O under reaction
conditions.



Experimental
40 mg sample were placed in the EXAFS cell and reduced in flowing H2 at 390°C for 1h. The Fe-K edge
EXAFS spectrum was then measured at liquid nitrogen temperature. Subsequently, the cell was connected
to a flow of 45 ml/min N2O/He (1000 ppm) and the temperature was increased from room temperature to
400°C with an increment of 3°C/min. The change in shape and position of the Fe K edge was continuously
followed by XANES (stepsize 1 eV). Finally, the sample was cooled down again in He and another EXAFS
spectrum of the now oxidised catalyst was measured at liquid nitrogen temperature. 
The sample was reduced once more in flowing H2 at 390°C for 1h and cooled down to room temperature.
Then the cell was heated (3°C/min) to 350°C in 45 ml/min He. At 350°C the inlet stream of the cell was
switched from He to N2O/He (1000 ppm) and the oxidation of the sample by N2O was continuously
followed by XANES. In cases where the oxidation rate at 350°C was very low the sample temperature was
carried to 400°C to complete the oxidation. 
The change of oxidation state of the samples was determined by the shift of the Fe K edge. The position of
the edge was defined as the energy at half height of the edge. 

Results
For all tested samples a shift of the Fe K edge to higher energies was observed during treatment with N2O,
at temperatures between 350° C and 400 °C. The rate of oxidation differed among the samples. Fe-ZSM-5
containing mainly small (binuclear) iron oxide clusters showed the highest oxidation rate, whereas samples
containing mainly large hematite clusters reacted only slowly with N2O.
Clear differences were also observed in the EXAFS spectra of the reduced and N2O-oxidised materials. A
detailed structural analysis of the data is under way. Qualitatively, the results indicate a much higher
structural inhomogeneity in the reduced state of the iron clusters  (see Figure 1). Note that the reduced state
is the one, which can react with N2O and is, thus, more relevant for catalysis.
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Figure 1) EXAFS spectra of Fe-ZSM-5 after reduction in H2 (a) and subsequent oxidation by N2O (b).




