	Experiment title: Rigidity transitions and molecular structure of As-Se glasses	Experiment number: HS-1860
Beamline:	Date of experiment:	Date of report:
BM02	from: 27. Nov. 2002 to: 03. Dec. 2002	28.02.2003
Shifts:	Local contact(s):	Received at ESRF:
18	Dr. Jean-Francois Bérar	
Names and affiliations of applicants (* indicates experimentalists):		
S. Hosokawa,* Y. Wang,* and WC. Pilgrim		
Institut für Physikalische-, Kern-, und Makromolekulare Chemie, Philipps Universität Marburg		
P. Boolchand		
Electrical, Computer Engineering and Computer Science, University of Cincinnati		

Report:

Mean-field constraint theory [1,2] for network glasses provides a powerful tool to explain experimentally observed numerous anomalies around the critical composition of the rigidity percolation threshold at an average coordination number, $\langle r \rangle = 2.4$, where the number of constraints per atom is equal to the degree of freedom. The character of the network glass undergoes a first-order-like transition from *floppy* at < r > < 2.4 to *rigid* at < r > > 2.4. In case of glassy As_xSe_{1-x} systems, this corresponds to x = 0.40. Recently, Boolchand and coworkers measured T-modulated differential scanning calorimetry (MDSC) on As_xSe_{1-x} glasses. The results clearly provide evidence for a multiplicity of stiffness transitions; an onset point at x =0.29 (< r > = 2.29), significantly lower than the mean-field value of < r > = 2.40, and a completion point at x = 0.37. The intermediate phase in between represents an *unstressed* rigid glass phase. The MDSC results show that the compositional width of the intermediate phase is larger in glassy As_xSe_{1-x} than in glassy Ge_xSe_{1-x} [4]. These thermal results led them to conclude that in addition to pyramidal $As(Se_{1/2})_3$ units, 30 % of quasitetrahedral Se=As(Se_{1/2})₃ units also serve to cross-link Se_n chains at x < 0.40. Generally, one expects a glass structure in the intermediate different from the *floppy* or *rigid* phases, which would account for the unstressed nature of the backbone. However, we know little about the structure of this glass system [5] that would permit to understand the observed thermal behaviour.

Anomalous x-ray scattering (AXS) experiments were carried out at two energies (-20 and -200 eV) below the K edge of each element using a normal ω -2 θ diffractometer. To obtain a sufficient energy resolution (to discriminate the elastic signal from the K_{β}

fluorescence and Compton scattering contributions) and enough counts in a reasonable data acquisition time, we chose a graphite analyser crystal with a 40 cm detector arm [6], providing an energy resolution of about 55 eV. The samples were prepared by quenching the melts after rocking a quartz ampoule containing the mixed compound. The measurements were performed at room temperature with reflectance geometry.

We measured three samples (x = 0.20, 0.29, and 0.40) in steps ΔQ of 0.05 Å⁻¹. As an example of our results, differential structure factors $\Delta_i S(Q)$ for glassy As₄₀Se₆₀ close to the As and Se K edges are shown in the figure by crosses and circles, respectively. Also given is the total structure factor S(Q) (solid line) measured at the incident x-ray energy of 11664 eV (200 eV below the As K edge). Apparently, the statistical quality of the $\Delta_i S(Q)$ s is excellent and easily allows an interpretation of underlying information. $\Delta_{As}S(Q)$ has a larger prepeak at 1.2 Å⁻¹ than the S(Q) at the same Q position, whereas the first peak becomes smaller and shifts towards the higher Q position. On the other hand, $\Delta_{\text{Se}}S(Q)$ has a small shoulder around Q =1.45 Å⁻¹, which would produce an asymmetric shape for the prepeak in S(Q). Since $\Delta_{As}S(Q)$ originates from partial structure factors $S_{ij}(Q)$ of about 33 % $S_{AsAs}(Q)$, 60 % $S_{AsSe}(Q)$, and 7 % $S_{\text{SeSe}}(Q)$, while $\Delta_{\text{Se}}S(Q)$ results from about $-3 \% S_{\text{AsAs}}(Q)$, 40 % $S_{\text{AsSe}}(Q)$, and 63 % $S_{\text{SeSe}}(Q)$, it is obvious that the prepeak at 1.2 Å⁻¹ is a result of the As-As correlation and the signal around 1.45 Å⁻¹ is composed of the Se-Se contribution. Very similar results are also obtained at the other two compositions. In order to confirm the above speculation on a quantitative basis, it is essential to obtain complete sets of $S_{ii}(Q)$ s from the present results. Such analyses are now in progress. Still needed are experiments for the other concentrations x = 0.25, 0.33, and 0.37, to discuss the relation between the structure and the stiffness transition, especially exploring quasitetrahedral Se=As(Se_{1/2})₃ units. These experiments will be applied in the next proposal.

[1] J. C. Philipps, J. Non-Cryst. Solids 34, 153 (1979).

[2] M. F. Thorpe, J. Non-Cryst. Solids 57, 355 (1983).

[3] D. G. Georgiev, P. Boolchand, and M. Micoulaut, Phys. Rev. B 62, R9228 (2000).

[4] P. Boolchand, X. Feng, and W. J. Bresser, J. Non-Cryst. Solids 293-295, 348 (2001).

[5] A. L. Renninger and B. L. Averbach, Phys. Rev. B 8, 1507 (1973).

[6] S. Hosokawa, Y. Wang, J.-F. Bérar, J. Greif, W.-C. Pilgrim, and K. Murase, Z. Phys. Chem. 216, 1219 (2002).

