	Experiment title: HIGH PRESSURE CRYSTALLOGRAPHIC CONSEQUENCES OF ELECTRONIC AND MAGNETIC	Experiment number: HS1906
$\overline{\mathbf{ESRF}}$	TRANSITIONS IN MOTT INSULATORS.	
Beamline:	Date of experiment:	Date of report:
Beamline: ID09A	Date of experiment: from: 11.12.02 to: 15.12.02	Date of report: 18.02.04

Names and affiliations of applicants (* indicates experimentalists):

Moshe P. Pasternak

12

Gregory Kh. Rozenberg

School of Physics and Astronomy, Tel Aviv University, ISRAEL

Report:

Y. Amiel, G. Kh. Rozenberg, M. P. Pasternak, N. Nissim, A. Sani, *Pressure-Induced Electronic and Structural Transformations in FeCr₂S₄*, submitted to Phys. Rev. B

ABSTRACT

Electronic and structural properties of the ferrimagnetic semiconductor $FeCr_2S_4$ were determined by combining the methods of electrical resistance, R(P,T), ⁵⁷Fe Mössbauer spectroscopy, and synchrotron x-ray diffraction, to 20 GPa using diamond anvil cells. It was found that a local maximum on R(T) curve, corresponding to the CMR effect, substantially diminishes and broadens with pressure increase shifting to higher temperatures and finally disappears at ~7 GPa. Suppressing of the CMR effect corroborates with a trend toward gap closure resulting in a breakdown of the electronic *d-d* correlation, leading to a *Mott* transition, e.g., to a metallic and a non-magnetic Fe^{2+} electronic state. The Mott transition is

accompanied by an appreciable volume decrease of \sim 5% and gives rise to a sluggish first-order phase transition from spinel to Cr_3S_4 -like structure accompanied by an additional \sim 13% volume collapse. The structural transition is completed at \sim 15 GPa. The relations between the structural and the electronic transitions are discussed.

G. Kh. Rozenberg, M. P. Pasternak, W. M. Xu, L. S. Dubrovinsky and S. Carlson, High-Pressure Structural Phase Transition with no Symmetry Change Induced by High – Low Spin Crossover in RFeO₃ Perovskites, will be submitted to Phys. Rev. Lett.

ABSTRACT

High pressure synchrotron x-ray diffraction studies to 120 GPa and Raman studies up to 60 GPa were carried out in the antiferromagnetic $RFeO_3$ perovskites with representative rareearth cations R starting with the *larger* Pr^{3+} , *intermediate* Eu^{3+} to the *smallest* Lu^{3+} . The XRD and Raman spectroscopy data have been analyzed taking in account the recent results of ^{57}Fe Mössbauer spectroscopy. It was found that all $RFeO_3$ undergo almost reversible first-order isostructural phase transition around 50 GPa accompanied by a significant and abrupt volume shrinkage (4-6.4%). For the larger and intermediate R the volume collapse concurs with a substantial reduction of the distortion of the orthorhombic unit cell while for the smaller Lu a "pure" isostructural transition is observed. It was concluded that all these transitions are driven by the high-to low spin transition (HS-LS) in Fe^{3+} namely, S=5/2, $^6A_{1g} \rightarrow S=1/2$, $^2T_{2g}$ and represents a new kind of pressure-induced **isostructural** transitions driven solely by spin state changes. The sluggish second-order HS-LS transition accompanying the first order isostructural phase transition in $PrFeO_3$ is reflected in its EOS due non-linear elastic constants.