ESRF	Experiment title: Crystallographic Investigations on Structure and Function of Photoactive Proteins	Experiment number : MX-134
Beamline:	Date of experiment:	Date of report:
ID 29	15 July 2004 to 16July 2004	28.02.2005
Shifts:	Local contact(s):	Received at ESRF:
3	Dr William SHEPARD	
Names and affiliations of applicants (* indicates experimentalists):		
Jacek Biesiadka*, Bernhard Loll* and Wolfram Saenger		
Institut für Chemie/Kristallographie, Freie Universität Berlin, Takustr. 6, D - 14195 Berlin		
Norbert Krauß		
Institut für Biochemie, Universitäts-Klinikum Charité der Humboldt-Universität Berlin, Monbijoustr. 2, D - 10117 Berlin		

Report:

Photosystem II (PSII) is located in the thylakoid membrane of higher plants, algae and cyanobacteria that catalyzes the oxidation of water to atmospheric oxygen.

We are elucidating the three-dimensional structure of the PSII purified from the thermophilic cyanobacterium *Thermosynechococcus elongatus*. Up to now we obtained electron density maps at relatively low resolutions (Zouni *et al.* 2001), the most recent model determined at 3.2 Å (Biesiadka *et al.*, 2004), collected during the same proposal (MX134) period.

During the same proposal period we have collected datasets at 4 Å resolution at the Mn-edge and beyond. As there is quite some discussion about possible radiation damage specifically to the metal-sites, we planned to decrease the crystal temperature to 10 K.

The aim of this experiment was to collect dataset at Mn- and beyond at around 10 K to lower radiation damage around the redox-active Mn_4Ca cluster. These data should provide additional structural information on the geometry and coordination of the metal cluster. A Helium cryostat was used to cool crystals to lower temperatures. The temperature of the specimen was about 15 to 20 K.

Several observations regarding data collection with the He-cryostat:

- high flow rates and perturbations of the cryo-stream caused vibration of the crystals. The vibration was especially strong when large crystals were mounted.

- prominent ice formation was observed on the crystal surface. Icing was dramatically increasing while fast rotating the crystal. Therefore inverse-beam data collection method was not applicable.

Several useful datasets were collected at the Mn-edge with a resolution of about 3.8 Å. The investigation of anomalous difference Fourier maps based on "Helium"-datasets revealed clear peaks at the location of the Mn-cluster. The appearance of these maps was different compared to 145K data, but higher resolution is needed for reliable interpretation of the structure of Mn_4Ca -cluster.

Reference

Biesiadka, J., Loll, B., Kern, J., Irrgang, K.-D. and Zouni, A. (2004) Crystal structure of cyanobacterial photosystem II at 3.2 Å resolution: a closer look at the Mn-cluster. *Phys Chem Chem Phys*, **6**, 4733-4736.