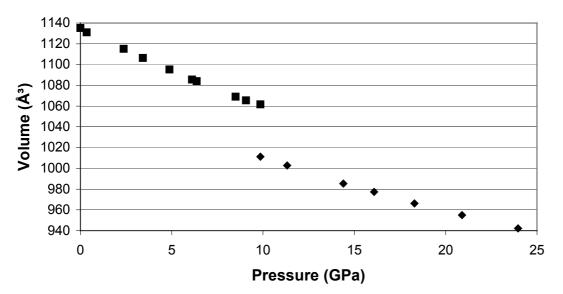
ESRF	Experiment title: Bonding in nitrido- and carbidonitridosilicates	Experiment number: HS-2146
Beamline:	Date of experiment:	Date of report:
ID09A	from: 23 April 2003 to: 26 April 2003	27.08.2003
Shifts: 9	Local contact(s): Dr. Michael HANFLAND	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists): Karsten Knorr*, Stephanie Rath*: Institut für Geowissenschaften, Universität Kiel, Olshausenstrasze 40, D-24098 Kiel, Germany		
Alexandra Friedrich*, Björn Winkler: Institut für Mineralogie, Universität Frankfurt, Senckenberganlage 30, D-60325 Frankfurt am Main, Germany		
Alexandra Lieb*, Wolfgang Schnick: Department Chemie, Universität München (LMU),		

Butenandtstr. 5-13 (D), D-81377 München, Germany

Report:


The systematic investigation of nitridosilicates [1-3] opened a new exciting field in material science, due to the exceptional thermal, chemical, and mechanical stability of these compounds. Nitridosilicates and oxonitridosilicates can be formally derived from oxosilicates by a total or partial exchange of oxygen by nitrogen. This replacement extends the structural possibilities significantly. For example, nitridosilicates with star-like units $[N^{[4]}(SiN_3^{[2]})_4]$ of four SiN₄-tetrahedra, which share a common corner, were recently found for the first time [4]. The central nitrogen of this unit can be formally exchanged by carbon, hence, forming carbidonitridosilicates [5]. A long range of cation- and anion-substitution mechanisms within nitridosilicates leads to a variation of their physical properties.

We performed *in situ* high-pressure powder diffraction experiments up to pressures of 36 GPa using synchrotron X-ray radiation at a wavelength of 0.4138 Å and a MAR345 image plate system. The samples were loaded into LeToullec diamond anvil cells using liquid neon as a pressure-transmitting medium. The images were processed and integrated with *FIT2D* [6]. *LeBail* refinements were carried out with *GSAS* [7].

We investigated the high-pressure behavior of the <u>carbidonitridosilicates</u> Ho₂[Si₄N₆C] [$P2_1/c$, a = 5.931(1), b = 9.900(1), c = 11.877(3) Å, $\beta = 119.69(1)$ °, V = 605.74(5) Å³] and isotypic Er₂[Si₄N₆C] [V = 602.70(5) Å³] up to 36 and 21 GPa, respectively. Both compounds show a similar compressional behavior. Hence, the substitution of Ho and Er seems to have no significant influence on the high-pressure properties. Third-order Birch-Murnaghan equations of state were fitted to the *P*-*V* data and values for the isothermal bulk modulus and its pressure derivative of $B_0 = 160(4)$ GPa and B' = 5.5(3) for Ho₂[Si₄N₆C] and of $B_0 = 165(6)$

GPa and B' = 4.7(7) for $\text{Er}_2[\text{Si}_4\text{N}_6\text{C}]$ were obtained. The bulk modulus is higher if compared to the DFT-computed bulk moduli of other nitridosilicates, such as $\text{SrSiAl}_2\text{O}_3\text{N}_2$ [$B_0 = 131.9(3)$ GPa] and $\text{Ce}_4[\text{Si}_4\text{O}_4\text{N}_6]\text{O}$ [$B_0 = 131(2)$ GPa, B' = 5.0(2)] [8]. The more covalent character of the Si-C bond compared with the Si-N bond might have an influence on the improved hardness and structural high-pressure stability of these compounds. The axial compressibilities show anisotropic behaviour with the *b* axis being most compressible.

We preliminary investigated the high-pressure behavior of the <u>oxonitridosilicate</u> Ce₄[Si₄O₃N₇]Cl (space group $P2_13$, a = 10.43 Å). This compound is isotypic to Ce₄[Si₄O₄N₆]O which crystallizes in a novel layer-type structure [9]. The topology of the layer is hyperbolically corrugated. Quantum-mechanical DFT-based computations on Ce₄[Si₄O₄N₆]O at high pressures indicated structural instabilities and a possible phase transition at high pressures up to 18 GPa [8]. Our experiments up to 28 GPa confirmed the proposed instability of this structure type. We detected a first-order phase transition occurring in a range between 8 and 10 GPa (see Figure). This phase transition is reversible and shows a hysteresis. The space group symmetry is reduced to $P2_12_12_1$ (a = 8.957, b = 10.458, c = 10.747 Å at 10.22 GPa) following a group-subgroup relationship, which indicates a displacive structural mechanism. Fitting the *p-V* data with a third-order Birch-Murnaghan equation of state results in an isothermal bulk modulus $B_0 = 123(1)$ GPa (B' = 5) for the low-pressure phase, and $B_0 = 121(1)$ GPa (B' = 5) for the high-pressure phase. Further experiments on Ce₄[Si₄O₄N₆]O, which shows differently occupied Ce atom positions, could give an insight into the effects of O-Cl anion substitution on the high-pressure properties.

Literature:

- [1] Schnick, W., Huppertz, H. (1997) Chem. Eur. J., 3, 679 683.
- [2] Schnick, W., Huppertz, H., and Lauterbach, R. (1999) J. Mater. Chem., 9, 289 296.
- [3] Schnick, W. (2001) Int. J. Inorg. Mater., 3, 1267 1272.
- [4] Huppertz, H. and Schnick, W. (1996) Angew. Chem. Int. Ed. Engl., 35, 1983 1984.
- [5] Höppe, H.A., Kotzyba, G., Pöttgen, R., and Schnick, W. (2001) J. Mater. Chem., 11, 3300 3306.
- [6] Hammersley, A. (1998) FIT2D, Version 10.27, Reference Manual, ESRF, Grenoble, France.
- [7] Larson, A.C. and Von Dreele, R.B. (1994) Los Alamos National Laboratory Report LAUR, 86–748.
- [8] Winkler, B., Hytha, M., Hantsch, U., and Milman, V. (2001) Chem. Phys. Letters, 343, 622 626.
- [9] Irran, E., Köllisch, K., Leoni, S., Nesper, R., Henry, P.F., Weller, M.T., and Schnick, W. (2000) Chem. Eur. J., 6, 2714 – 2720.