SN BL	Experiment title: Structural characterisation of intermetallic compounds and metal hydrides by powder diffraction.	Experiment number: 01-01-619
Beamline: BM01B	Date of experiment:from:11-april-03to:14-april-03	Date of report: 28-march-03
Shifts: 9	Local contact(s): Hermann EMERICH	Received at UNIL:

Names and affiliations of applicants (* indicates experimentalists):

*Radovan Černý Klaus Yvon *Yaroslav Filinchuk *Yaroslav Tokaychuk

Laboratoire de Cristallographie, Université de Genève, 24, quai Ernest-Ansermet CH-1211 Genève 4, Suisse

1. Alloy Ce₂NiSi with an own structure type

0-43 deg / 0.004 deg / 1 sec. $P6_3/m$, a = 15.99152(19), c = 4.27183(8) Å, V = 946.07(3), single phase. Ordering of Si and Ni atoms over four sites was detected.

2. Deuteride Ce₂NiSiD_x

0.6-37 deg / 0.008 deg / 3 sec. The parent alloy structure is preserved. Lattice expands anisotropically: a = 17.248(2), c = 4.0814(4) Å, V = 1051.5(2) Å³. Single phase sample, strong anisotropic peak broadening.

3. Alloy LaNi₃B with a new structure type

3-40 deg / 0.004 deg / 1 sec. *Imma, a* = 4.97675(3), *b* = 7.14918(4), *c* = 8.30753(6) Å, V = 295.579(3) Å³. Synchrotron data allowed to localize and refine oxygen impurity which presumably stabilize this new phase. Refinement results are of single crystal experiment quality. Pronounced anisotropic peak broadening was modelled with a general orthorhombic model for anisotropic strain broadening. Sample contains few percents of unavoidable La₂Ni₅B₄ (Nd₂Ni₅B₄ str. type) and LaNi₄B (CeCo₄B str. type) phases. The structural information for the alloy will be coupled with those for its deuteride (No. 4).

4. Deuteride LaNi₃BD_x

3-40 deg / 0.004 deg / 2 sec. The parent alloy structure is preserved. Lattice expands anisotropically: a = 5.37472(11), b = 7.63953(18), c = 8.0698(2) Å, V = 331.347(14) Å³. Pronounced anisotropic peak broadening. Sample contains few percents of unavoidable La₂Ni₅B₄D_x and LaNi₄BD_x phases.

5. Deuteride CeCo₃D₄

0.6-37 deg / 0.006 deg / 2.3 sec. Derivative of the CeCo₃ alloy structure, with enormous unique-axis expansion of the unit cell (30% along *c*-direction) upon deuteration. The deuteride partially decomposes to an amorphous CeCo₂ deuteride and crystalline Ce₂Co₇D₆ (see below a compound No. 6). High resolution synchrotron data allowed to reveal and to resolve fine structural details for both CeCo₃D₄ and Ce₂Co₇D₆ in their mixture.

6. Deuteride Ce₂Co₇D₆

0.6-37 deg / 0.006 deg / 2.3 sec. Derivative of the Ce₂Co₇ alloy structure, with enormous unique-axis expansion of the unit cell (30% along *c*-direction) upon deuteration. The deuteride partially decomposes to an amorphous CeCo₂ deuteride and crystalline Ce₅Co₁₉D_x. High resolution synchrotron data allowed to reveal and to resolve fine structural details for both Ce₂Co₇D₆ and Ce₅Co₁₉D_x in their mixture.

7-8. Deuterides of ErCo₃ and ErNi₃ alloys

4-35 deg / 0.005 deg / 2.3 sec and 0.6-37 deg / 0.005 deg / 2 sec. AB₃ compounds, which are rhombohedral stacking variants of AB₂ and AB₅ structures. They demonstrate anisotropic cell expansion due to D-atoms and sharp plateau on pressure-composition isotherm. Both are expected to exhibit a local complex formation for transition metal atoms.

9-13. Deuterides of Er₃Ni₇B₂, Ce₂Ni₅B₄, Nd₂Ni₅B₄, YNi₂B₂, HoNi₂B₂ alloys

3-35 deg / 0.01 deg / 3.5 sec for $Er_3Ni_7B_2$, 4-37 deg / 0.005 deg / 1 sec for $Ce_2Ni_5B_4$

4-16 deg $\,/$ 0.005 deg / 1 sec and 16-40 deg $\,/$ 0.005 deg / 2 sec for $Nd_2Ni_5B_4$

0.6-33 deg $\,/$ 0.005 deg / 1 sec for YNi_2B_2

5.6-17 deg $\,/$ 0.005 deg / 2 sec and 17-32.5 deg $\,/$ 0.005 deg / 1 sec for $HoNi_2B_2$

A few deuterides of intermetallic borides that absorb only a little amount of hydrogen (cell expansion typically 4% in volume). These new compounds are expected to form an ordered deuterium coordination of a single Ni-position. High resolution synchrotron data will allow localization of the voids occupied by D-atoms without performing expensive neutron diffraction study. Data treatment is still in progress.

14. Deuteride Zr₃Al₂D_x

3-35 deg / 0.008 deg / 3.5 sec. $P4_2/mnm$, a = 7.5960(3) Å, c = 7.2011(3) Å, V = 415.50(3) Å³. Metallic substructure was determined and refined.

15. Alloy Yb_{12.5}Fe_{67.5}Ga₂₀

4-16 deg / 0.008 deg / 2 sec, 16-37 deg / 0.008 deg / 4 sec. $PrFe_7(A)$ -type, R-3m: a = 8.6733(4) Å, c = 12.5677(6) Å, V = 818.75(6) Å³. Single phase sample with the rhombohedral structure (difficult in the Yb-Fe-Ga system).

16. Alloy Yb₁₅Fe₆₅Ga₂₀

4-16 deg / 0.005 deg / 1.2 sec, 16-37 deg / 0.005 deg / 2.5 sec.

Main phase: LuFe_{9.5}-type, *P*6₃/*mmc*: a = 8.5379(3) Å, c = 8.3770(4) Å, V = 528.84(3) Å³ Secondary: PrFe₇(A)-type, *R*-3*m*: a = 8.5823(6) Å, c = 12.5713(19) Å, V = 801.90(14) Å³ and Fe_{1-x}Ga_x, *Im*-3*m*: a = 2.89386(7) Å, V = 24.234(1) Å³

Strong anisotropic peak broadening in samples 15 and 16 was successfully modelled.

17. Alloy Yb₁₅Fe₆₅Ga₂₀

4-37 deg / 0.005 deg / 1.1 sec. Data analysis in progress.

The data of samples 5-8 and 14 are ready for joint refinement with neutron data.