

ESRF	Experiment title: Density measurements on Fe-S-Si liquids at high pressures and temperatures by X-ray absorption.	Experiment number: HS2340
Beamline :	Date of experiment:	Date of report:
ID30	from: 03/09/2003 to: 09/09/2003	26/08/2004
Shifts: 18	Local contact(s): M. Mezouar	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		
C. Sanloup*, Université Pierre et Marie Curie, Paris.		
G. Morard*, ESRF.		
G. Fiquet, Université Pierre et Marie Curie, Paris.		

Report:

Density of liquid Fe-Si alloys was measured *in situ* up to 5 GPa-1725 K by an X-ray absorption technique [1] in the Paris-Edinburgh cell. A high energy monochromatic beam was used. As the absorption coefficient of X-rays, μ , for a given element increases both with its atomic mass and with the wavelength, an optimum value was found for E=46.7 keV. For a given composition, ρ_{liq} values at different pressures are fitted to a second order isothermal Birch-Murnaghan equation of state to extract the bulk modulus (Figure)

Figure: Measured volumic mass of Fe-Si liquids as a function of pressure. Lines are Birch-Murnaghan fits of the data.

Results:

Increasing the amount of silicon in liquid iron decreases the bulk incompressibility by only -0.5 GPa per 1 weight% of Si [4]. These data confirm our previous prediction of a negligible effect of Si on liquid Fe bulk properties, prediction based on the observation of a similar local structure in liquid Fe and liquid Fe-Si alloys [3]. Si and S have therefore opposite effects on P-waves velocity ($v_P = \sqrt{(K/\rho)}$), both elements reduce the bulk density of liquid iron but only S affects its compressibility [2]. Since compression-wave velocities in the Earth's outer core are slightly higher than in pure liquid Fe in the same P-T conditions, it implies that Si would correct this discrepancy while S would increase it.

References:

- [1] Katayama et al., 1996, High Pressure Res., 14, p.383.
- [2] C. Sanloup et al., 2000a, Geophys. Res. Lett., 27, p.811.
- [3] C. Sanloup et al., 2002, J. Geophys. Res., 107, p.ECV-4.
- [4] C. Sanloup et al., 2004, Geophys. Res. Lett., 31, L07604.