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Report: 
 

We have studied the elimination reaction of 1,2-diiodoethane (C2H4I2) molecule, which 
after photo-excitation with 267 nm photons gives a short-lived iodoethyl radical (CH2ICH2•) 
and iodine atom (I).  

For this purpose we used a pump-probe diffractometer installed at ID09B. The photo-
reaction was triggered by pulses delivered from a femtosecond CPA amplifier (λ=800nm) 
and further converted to third harmonic (267nm, 35µJ/pulse, 1 kHz repetition rate). Before 
reaching the sample the pulses were stretched with silica prisms to the pulse-length of ~2ps in 
order to avoid multiphoton excitations. The reaction was probed with the white beam (0.45 
keV bandwidth centred at 18.2 keV) produced by U17 undulator. The chromophore 
concentration of 60 mM was chosen to maximize the photo-prducts signal while keeping the 
inter-solute contributions negligible.  

We collected time-resolved data for the following time-delays: -3ns, -100ps, 50ps, 
100ps, 300ps, 1ns, 3ns, 10ns, 30ns, 50ns, 70ns, 100ns, 300ns, 1 µs, 3µs. The data point at  
-3ns served as a reference point. To recover from the diffration signal the changes due to 
photo-excitation, difference signal (∆S) was generated by subtracting the reference data at  
-3ns from the data at each time-point. For C2H4I2 in polar methanol, we extracted laser-
induced signal to high precision through numerous repetitions. We also obtained preliminary 
data for C2H4I2 in non-polar cyclohexane. The figure below shows the difference signal as a 
function of time delays in both methanol and cyclohexane. The ∆S(q) was multiplied by q 
and its sine-Fourier transform, ∆S(r), was multiplied by r to magnify the intensity at high q 
and r, repectively. Inspecting the figure, one can see that difference patterns at low q are 
markedly different in methanol and cyclohexane, whereas at high q they are nearly identical, 
i.e. independent of the solvent.  

In the real space, the negative peak near 5 Å is due to the depletion of the I..I 
internuclear distance in C2H4I2. This feature would be common for all reaction channels 



potentially taking place. However, the peaks between 1 Å and 3 Å are sensitive to the 
position of the I atom relative to the two carbon centres. It is expected from the theory that the 
bridged structure will give only one peak in this region while the classical anti structure will 
give two peaks. Looking at the measured 100ps curves on figures C and E, it is clear that we 
have observed the bridged radical in both solvents. Another, unexpected, feature emerges 
with time. On the nanosecond time scale a new peak apperas at 2.7 Å. This feature 
corresponds to the I-I disntance of the nascent I2 molecule. This process seems to be solvent 
independent too.  

We also note that the low q data contains information about the structural change in the 
solvent. The peaks and valeys above 6 Å in figures C and E contain important information 
about the response of the solvent cage to the solute excitation, and of the bulk solvent to the 
energy released by relaxing solutes. To fully explore solvent dynamics, apparent temporal 
evolution of peaks and valleys at long distances (r > 6 Å), molecular dynamics (MD) 
simulations will be necessary.  
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Figure: Time-resolved diffraction signal as a function of time delays for C2H4I2 in methanol (A, B, C) and 
cyclohexane (D, E). (A) Raw difference images for selected time delays (t = -100 ps, 100 ps, 10 ns, and 1 
µs). (B) Difference diffraction intensities, q∆S(q), excited minus non-excited, for C2H4I2 dissolved in 
methanol. (C) Difference radial density functions, r∆S(r) for C2H4I2 in methanol. (D) Difference intensities, 
q∆S(q) for C2H4I2 in cyclohexane. (E) Difference radial density functions, r∆S(r) for C2H4I2 in cyclohexane. 
The dashed lines in C and E are drawn to show the trend in the positions of the peaks and valleys as a 
function of time. 


