ROBL-CRG	Experiment title: Influence of interface structure on GMR and magnetic behaviour of Fe/Cr multilayers	Experiment number: 20_02_059
Beamline:	Date of experiment:	Date of report:
BM 20	from: 04.06.02 to: 08.06.02 and from: 29.08.02 to: 01.09.02	13.11.2002
Shifts:	Local contact(s):	Received at ROBL:
12 + 9	Dr. Norbert Schell	14.11.02

Names and affiliations of applicants (* indicates experimentalists):

F. Prokert *, FZ Rossendorf, IIM, Dresden, Germany

N. Shevchenko *, FZ Rossendorf, IIM, Dresden, Germany

E.A. Kravtsov, Russian Academy of Science, IMP, Ekaterinburg, Russia

M.A. Milyaev, Russian Academy of Science, IMP, Ekaterinburg, Russia

Report:

The *interface structure of Fe/Cr multilayers* (MLs) was studied by x-ray reflectometry (XRR) and diffuse scattering using the contrast enhancement between Fe and Cr for measurements at energies in vicinity of the K-edges of these elements. The Fe/Cr MLs, UU9_3, UU9_1 and UU9_4, having the double layer structure $8 \times f^{57}Fe(2 \text{ nm})/Cr(1 \text{ nm})J$, were prepared by MBE on sapphire with a Cr buffer layer (7 nm) at different substrate temperatures of 60°C, 140°C and 240°C, respectively.

The data were received in the first run at energies *below* (5.95 keV) and *above* (6.05 keV) the *Cr K-edge* and in the second run *below* (7.10 keV) and *above* (7.15 keV) the *Fe K-edge*. Besides the measurements of the specular scattering also the diffuse scattering was studied by rocking and offset scans. Fig. 1 shows the plotted intensity of such scans taken at 7.10 keV.

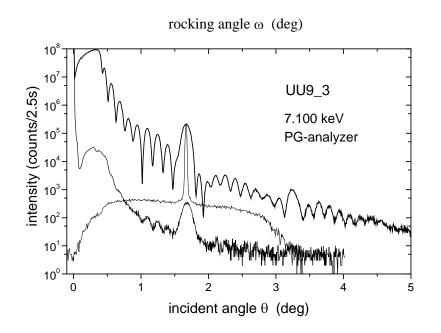


Fig. Specular, 1: longitudinal and transverse scans from the Fe/Cr ML UU9 3 measured below the Fe K-edge at 7.10 keV. The intensity of the transverse scan is plotted versus the rocking angle.

This study is a part of measurements on a series of this type of MLs. The MLs were grown on $(1 \ 0 \ -1 \ 2) \ Al_2O_3$ substrates, covered by 7 nm–Cr buffer layer, at different substrate temperatures in the range 20–480°C. Preceding investigations [1] have shown that the interface rms-roughness in these Fe/Cr-MLs strongly depends on the substrate temperature.

At present the evaluation of the measurements is not completed. Simulations using the REFS code (Bede Scientific software package) [2] are done only for the sample UU9_1. However, *first results* concerning the specular reflectivity have shown:

• The interface *rms-roughness*, σ_{rms} , of Fe-on-Cr (σ^{Cr}_{rms}) and Cr-on-Fe (σ^{Fe}_{rms}) are significantly different. The *interface width* σ^{Cr}_{rms} is smaller compared to interface width σ^{Fe}_{ms} .

From the distribution of the diffuse scattering of this ML follows :

- The part of the vertically *correlated interface rms-roughness*, C_v does not exceed an amount of $C_v \approx (30 \pm 15)\%$.
- The MBE-grown Fe/Cr MLs of this type have an interface morphology with a short *lateral roughness correlation length* $\xi \approx 8\pm 3$ nm.
- The *Hurst parameter*, *h*, indicates with values of $h \approx 0.35\pm0.5$ a relatively high jaggedness of the interfaces. Based on the model of a self-affine interface morphology [3], this gives a *fractal dimension* D=3-h of appr. 2.65.

References

- [1] V.V. Ustinov et al., J. of Magnetism and Magnetic Materials 240 (2002) 511
- [2] B.K. Tanner et al., Surface Invest. 12 (1997) 259
- [3] S.K. Sinha et al., Phys. Rev. B 38 (1988) 2297