	Experiment title: Tetrahedrite $\mathrm{Cu} 10(\mathrm{Fe}, \mathrm{Zn}) 2 \mathrm{Sb} 4 \mathrm{~S} 13$ and tennantite $\mathrm{Cu} 10(\mathrm{Fe}, \mathrm{Zn}) 2 \mathrm{As} 4 \mathrm{~S} 13$: the influence of cation substitution to the mixed-valence state of Cu	Experiment number: HS-2643
Beamline:	Date of experiment: from: 29/04/2005 to: 03/05/2005	Date of report: $24 / 01 / 2007$
Shifts:	Local contact(s): Denis Testemala	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		
Andrzej Grzechnik ${ }^{1^{*}}$, Karen Friese ${ }^{1 *}$, Tonči Balić-Žunić ${ }^{2 *}$, Emil Makovicky ${ }^{2}$		
${ }^{1}$ Departamento de Física de la Materia Condensada, Universidad del País Vasco, Bilbao, E-48080 Spain ${ }^{2}$ Geological Institute, University of Copenhagen, DK-1350 Copenhagen, Denmark.		

Report:

Phases of the tetrahedrite-tennantite solid solution series with the general composition $(\mathrm{Cu}, \mathrm{Ag})_{10}(\mathrm{Fe}, \mathrm{Zn}, \mathrm{Hg}, \mathrm{Cu}, \ldots)_{2}(\mathrm{Sb}, \mathrm{As})_{4} \mathrm{~S}_{13}$ are among the most frequent complex sulfides in ore deposits.
The crystal structures of the tetrahedrite-tennantite family can be derived from the sphalerite structure type, where a part of the tetrahedra is replaced by other coordination polyhedra. $\mathrm{Cu}(1)$ is still coordinated tetrahedrally by $\mathrm{S}(1)$, but the coordination around Sb in tetrahedrite (or As in tennantite) is in the form of a trigonal pyramid $\mathrm{SbS}(1)_{3}$. The $\mathrm{Cu}(2)$ atom has a trigonal planar coordination.

The four phases investigated here do not deviate from the ideal stochiometry $\mathrm{M}_{12}(\mathrm{Sb} . \mathrm{As})_{4} \mathrm{~S}_{13}$, yet some of the Cu atoms are substituted by Fe . The nominal compositions of the samples are $\mathrm{Cu}_{11.5} \mathrm{Fe}_{0.5} \mathrm{Sb}_{4} \mathrm{~S}_{13}$, $\mathrm{Cu}_{10} \mathrm{Fe}_{2} \mathrm{Sb}_{4} \mathrm{~S}_{13}, \mathrm{Cu}_{11.5} \mathrm{Fe}_{0.5} \mathrm{As}_{4} \mathrm{~S}_{13}$, and $\mathrm{Cu}_{10} \mathrm{Fe}_{2} \mathrm{As}_{4} \mathrm{~S}_{13}$. If the amount of substitution is low, iron is incorporated as Fe^{3+}. With increasing substitution, Fe^{3+} is converted into Fe^{2+}, the conversion being complete at a composition of $\mathrm{Cu}_{10} \mathrm{Fe}_{2}(\mathrm{Sb}, \mathrm{As})_{4} \mathrm{~S}_{13}$. The lattice parameters of tetrahedrite and tennantite can be directly related to the $\mathrm{Cu} / \mathrm{Fe}$ substitution.

Previous structural studies showed highly anisotropic displacement parameters of the triangularcoordinated $\mathrm{Cu}(2)$. In a more recent single crystal investigation of unsubstituted Cu -poor synthetic tetrahedrite, the $\mathrm{Cu}(2)$ atom in trigonal planar coordination was modelled using a non-harmonic development of the atomic displacement factor.

In the present study, based on synchrotron powder diffraction experiments, the Cu 2 sites have been modelled (JANA2000) as a pair of flat-pyramidal Cu sites slightly above and below an S1-S2-triangle. This approach is supported by complementary neutron diffraction studies where the $\mathrm{Cu}(2)$ position appears clearly split into these two sites with partial occupancy.

Our temperature dependent studies show that with the exception of the y coordinate of $\mathrm{Cu}(2)$, the changes in the fractional coordinates of all atoms are very small $(\approx 0.01 \AA)$. In the compounds with low substitution the angular distortion of the $\mathrm{Cu}_{1} \mathrm{~S}_{4}$ tetrahedra slightly decreases. General decrease of the S-Cu2-S angles expresses the increased departure of C 2 from the plane of the $\mathrm{S} 1-\mathrm{S} 1-\mathrm{S} 2$ triangle.

With increasing temperature, the centres of occupancy of the Cu2 site drift further apart. Split/deviation from the triangle plane is about 20% larger in tennantite than in the corresponding tetrahedrite. With rising temperature, $\mathrm{Cu} 2-\mathrm{Cu} 2$ distances approach $2.70-2.75 \AA$, typical for $\mathrm{Cu}-\mathrm{Cu}$ interactions, which in other sulphides are known to contribute to the stability of the structures.

Fobs-Fourier Central point x (Cu2), 0,0 ; distances in the three directions $2.5 \times 2.5 \times 2.5 \dot{A}$; Contour lines 2. Difference Fourier Central point $x(\mathrm{Cu} 2), 0,0$; distances in the three directions $2.5 x 2.5 x 2.5 \dot{A}$; Contour lines 0.1.

Tetraedrite 1:

$250^{\circ} \mathrm{C}: 38.6$

Tetraedrite 4

Room Temperature: 58.0

250 으: 45.7

0.64 / -0.66

$1.40 /-1.10$

Tennantite 8

250ํㅡ: 43.93

Tetraedrite 1: $\mathrm{Cu}_{11.5} \mathrm{Fe}_{0.5} \mathrm{Sb}_{4} \mathrm{~S}_{13}$, Room Temperature: Tetraedrite + Famatinite

Bowder profille based on pri fill

[^0]
[^0]: Tetraedrite 1: $\mathrm{Cu}_{11.5} \mathrm{Fe}_{0.5} \mathrm{Sb}_{4} \mathrm{~S}_{13}$, 250C: Tetraedrite + Famatinite

