

ESRF	Experiment title: Synthesis and transformations of nanomaterials; time resolved in-situ powder diffraction studies.	Experiment number: CH-2140
Beamline:	Date of experiment:	Date of report:
	from: 12 Jul 2006 to: 18 Jul 2006	27/4 2009
Shifts:	Local contact(s): Yaroslav Filinchuk	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		
Prof. Poul Norby*, Prof. Helmer Fjellvåg*, Dr. Tao Gao*		
Department of Chemistry and Center for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1033, Blindern, N-0315 Oslo, Norway		

Report: Doping-dependent properties of lepidocrocite titanates

Tao Gao, Helmer Fjellvåg, and Poul Norby

Figure 1. Polyhedral representation of the crystal structure of $Cs_xTi_{2-x/2}Mg_{x/2}O_4$ (x = 0.7) viewed down along the *c*-axis. The Mg substitution is not shown for simplification.

The structure of several of lepidocrocite titanates $Cs_xTi_{2-y}M_yO_4$, where *M* is any of vacancy, Li, Mg, Zn, Cu, Co, and Ni, has been determined from synchrotron XRD data collected at station BM01A, SNBL, ESRF. The lepidocrocite titanates studied usually crystallize into a body-centred orthorhombic layered structure, consisting of two-dimensional (2D) corrugated layers of edge and corner shared octahedra and interlayer Cs

ions, which compensate for the negative charge that arises from the substitution of M for Ti, as shown in Figure 1. The presence of interlayer Cs ions and the lattice substitution M indicates the lepidocrocite titanates are intrinsically heavy doped materials, where some doping-induced properties can be expected [1-2].

The structure of an Mg-doped titanate $Cs_xTi_{2-x/2}Mg_{x/2}O_4$ has been determined by starting a Rietveld refinement with the high-resolution synchrotron XRD data. The final refinement on the basis of a body-centred orthorhombic structure (space group *Immm*) yielded a satisfactory convergence with the residual indices of $R_{wp} = 0.0754$ and $R_p = 0.0564$. The observed, calculated and difference profiles are illustrated in Figure 2. The refinement confirms that Mg^{2+} ions occupy the octahedral sites in the 2D corrugated host layers; substitution for Ti⁴⁺ ions in the nominal TiO₂ framework results in negative charge that is balanced by the interlayer Cs⁺ ions.

Figure 2. Final results of the Rietveld fitting of synchrotron X-ray diffraction data for $Cs_xTi_{2-x/2}Mg_{x/2}O_4$ ($\lambda = 0.520193$ Å). The data region from 7.5° to 8.4° was excluded during the refinement due to a broad bump.

This compound shows interesting defect chemistry. Acid exchanging the $Cs_xTi_{2-x/2}Mg_{x/2}O_4$ results in the protonic form, $H_xTi_{2-x/2}O_{4-x/2}$ ·H₂O, which is notable for its extractable lattice Mg substitutions as well as the lattice O atoms [1]. The recent experiments indicate also the rich of defect chemistry in the isomorphous compounds with Zn and/or Ni doping [2, 3]. Further characterizations on these compounds are under way.

References

[1] Tao Gao, Helmer Fjellvåg, and Poul Norby, *Protonic titanate derived from* $Cs_xTi_{2-x/2}Mg_{x/2}O_4$ (x = 0.7) *with lepidocrocite-type layered structure*, **Journal of Materials Chemistry**, 19 (2009) 787-794.

[2] Tao Gao, Helmer Fjellvåg, and Poul Norby, *On the defect chemistry of lepidocrocite titanates: A zincdoped titanate* $Cs_xTi_{2-x/2}Zn_{x/2}O_4$ (x = 0.7), in preparation.

[3] Tao Gao, Helmer Fjellvåg, and Poul Norby, *Synthesis of nickel-doped lepidocrocite titanates and their doping-dependent properties*, in preparation.