ROBL-CRG	Experiment title: Solvation and complexation of uranium(VI) in room temperature ionic liquids	Experiment number: 20-01-654
Beamline:	Date of experiment:	Date of report:
BM 20	from: 22.02.2006 to: 25.02.2006	24.11.2006
Shifts:	Local contact(s):	Received at ROBL:
9	C. Hennig	
Names and affiliations of applicants (* indicates experimentalists):		

C. Gaillard*, I. Billard, A. Ouadi*, J. Champion* Institut Pluridisciplinaire Hubert Curien, Chimie Nucléaire, Strasbourg, France.

Report:

The aim of this work is to gain insights on the coordination properties of uranyl in room temperature ionic liquids (ILs), as a function of the nature of the uranyl counterions, and of the ionic liquid. Using UV-visible spectroscopy and EXAFS, we investigate the coordination sphere of uranyl after dissolution of various uranyl salts (UO₂X₂ with $X = NO_3^-$, triflate TfO⁻, ClO₄⁻) in four different ionic liquids. Three of them (C₄mimPF₆, C₄mimTf₂N and C₄mimBF₄) are based on the imidazolium cation (C₄mim = 1-methyl-3-butyl-imidazolium) and differ by their anionic components (PF₆⁻, (CF₃SO₂)₂N⁻ hereafter noted Tf₂N⁻ and BF₄⁻, respectively) while the Me₃NBuTf₂N liquid is based on a quaternary ammonium Me₃NBu⁺ cation, allowing us to assess the role of anionic and cationic components of the liquid. We also investigate the reactivity of the uranyl towards chloride ions introduced in solutions. EXAFS experiments were carried out at ROBL-ESRF beamline, at the U L_{III} edge, in transmission mode using argon-filled ionisation chambers at ambient temperature. Fits of the Fourier transform (FT) k³-weighted EXAFS data to the EXAFS equation were performed in R-space between 1 and 4 Å. The k-range used was 3.5-16 Å⁻¹.

The dissolution of uranyl salts, in absence of chlorides, could be achieved only in C_4 mimTf₂N and Me₃BuNTf₂N. EXAFS experiments, coupled with UV-visible measurements, show that the counteranions triflate, perchlorate and nitrate remain, at least partially, in the uranium first coordination sphere. Thus, dissolution of the salts does not impy the uranyl solvation by Tf_2N^- anions of the solvent. No influence of the IL cationic part was observed. Introduction of chlorides in solution was shown to improve the solubility of uranyl salts, in particular in C₄mimPF₆ and C₄mimBF₄. The ratio [Cl]/[U] in solutions was equal to 4. EXAFS clearly show that the tetra-chloro complex of uranyl UO₂Cl₄²⁻ is formed in all samples, excepting in C₄mimBF₄ (see figure 1). In the latter, the complexation is not total (N_{Cl} ~1), probably because of the presence of fluoride ions likely formed by the decomposition of BF₄⁻ anions.

Fig. 1: Influence of the uranyl salt and of IL on the complexation of uranium(VI) with chlorides: EXAFS spectra and their corresponding Fourier Transform. For sake of clarity, EXAFS and FT were shifted along the y-axis.