ESRF	Experiment title: Water vapour adsorption on surface- functionalized microporous carbons	Experiment number: SC- 2090
Beamline:	Date of experiment:	Date of report:
1D10A	from: 15-11-2006 to: 20-11-2006	07-01-2011
Shifts:18	Local contact(s):	Received at ESRF:
	Andrei Fluerasu	
Names and affiliations of applicants (* indicates experimentalists):		
*K.László Dept of Phys.Chem., Budapest University of Technology and Economics		
*K. Kosik, Dept of Phys.Chem., Budapest University of Technology and Economics		
*E. Geissler LSP, Université J. Fourier de Grenoble		
*A. Moussaïd, ESRF and LSP, Université J. Fourier de Grenoble		

Report:

X-ray Photon Correlation Spectroscopy of Dynamics in Thermosensitive Gels

Erik Geissler,¹ Katalin Kosik,² Andrei Fluerasu,³ Abdellatif Moussaïd,³ Krisztina László²

Summary: Temperature-sensitive hydrogels undergo a volume phase transition (VPT) when heated above a critical temperature T_c . For the poly(N-isopropyl acrylamide) (PNIPA)-water system, T_c .= 34°C. Below T_c the gels are transparent and highly swollen. On warming above T_c they promptly turn white and start to deswell. The rate of deswelling, however, can be orders of magnitude slower than that of swelling below T_c . The unstable intermediate structure above T_c , can retain the solvent and conserve the sample volume for may days, even with millimetre-sized samples.

Light scattering observations of the internal structure of these gels above T_c are precluded by their strong turbidity. Small angle X-ray scattering measurements (SAXS), on the other hand, are less subject to multiple scattering as X-rays penetrate more easily into the bulk material. Conventional (incoherent) SAXS observations reveal intense scattering from smooth internal water-polymer interfaces with an estimated surface area of about 7 m²/g in the swollen gel. The dynamics in the off-equilibrium high temperature state, investigated by X-ray photon correlation spectroscopy (XPCS), displays a relaxation rate that is linearly proportional to the wavevector q, rather than to q^2 as in diffusion processes. The physical origin of this relaxation is consistent with *jamming*, a phenomenon that is common in other disordered systems.

published in *Macromolecular Symposia* **256**, 73–79 (2007)