ESRF	Experiment title: Speciation of carcinogenic arsenic chemical forms in cellular ultrastructures.	Experiment number: SC2137
Beamline:	Date of experiment:	Date of report:
ID22	from: 15-NOV-2006 to: 20-NOV-2006	21/12/09
Shifts: 15	Local contact(s): Sylvain BOHIC	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists): ORTEGA Richard* (CNAB, CNRS, Gradignan, France) DEVES Guillaume* (CNAB, CNRS, Gradignan, France) BACQUART Thomas* (CNAB, CNRS, Gradignan, France) BOHIC Sylvain* (ESRF, Grenoble, France)		

Abstract

Identification of arsenic chemical species at a sub-cellular level is a key to understand the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near edge structure (µ-XANES) enables the direct speciation analysis of arsenic in sub-cellular compartments avoiding cell fractionation and other preparation steps that might modify the chemical species. This methodology couples tracking of cellular organelles in a single cell by confocal or epifluorescence microscopy with local analysis of chemical species by µ-XANES. Here we report the results obtained with a µ-XANES experimental setup based on Kirkpatrick-Baez X-ray focusing optics that maintains high flux of incoming radiation (> 10^{11} ph/s) at micrometric spatial resolution (1.5 x 4.0 μ m²). This original experimental setup enabled the direct speciation analysis of arsenic in subcellular organelles with a 10^{-15} g detection limit. In a previous experiment (experiment report SC1773, and Baquart et al., 2007), using µ-XANES we evidenced that inorganic arsenite, As(OH)₃, is the main form of arsenic in the cytosol, nucleus, and mitochondrial network of cultured cancer cells exposed to As_2O_3 . In this experiment, a predominance of As(III) species is observed in HepG2 cells exposed to As(OH)₃ with, in some cases, oxidation to a pentavalent form in nuclear structures of HepG2 cells (Bacquart et al., 2010). The observation of intra-nuclear mixed redox states suggests an inter-individual variability in a cell population that can only be evidenced with direct sub-cellular speciation analysis.

References

Bacquart T., Devès G., Carmona A., Tucoulou R., Bohic S., Ortega R. (2007) Subcellular speciation analysis of trace element oxidation states using synchrotron radiation micro-X-ray absorption near edge structure. *Analytical Chemistry*, 79, 7353-7359.

http://pubs.acs.org/doi/abs/10.1021/ac0711135

Bacquart T., Devès G., Ortega R. (2010) Direct speciation analysis of arsenic in subcellular compartments using micro-X-ray absorption spectroscopy. *Environmental Research, in press, available on line* (doi:10.1016/j.envres.2009.09.006)

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WDS-4XC3X9M-1&_user=513493&_coverDate=10%2F02%2F2009&_rdoc=1&_fmt=high&_orig=sea rch&_sort=d&_docanchor=&view=c&_acct=C000025358&_version=1&_urlVersion =0&_userid=513493&md5=17814b0e3dfef670f011d0f045752a3c