ESRF	Experiment title: High temperature structural studies of the Ca-doped Bismuth Ferrites, $Bi_xCa_{1-x}FeO_3$	Experiment number: HE 2476
Beamline:	Date of experiment:	Date of report:
BM01B	from: 02 February 2007 to: 06 February 2007	15 February 2007
Shifts:	Local contact(s):	Received at ESRF:
9	Mr. Wouter van Beek, Mr. Hermann Emerich	
Names and affiliations of applicants (* indicates experimentalists):		
Prof. J. Paul Attfield Dr. Luis Ortega San Martin* Ms. Sandra Carlsson*		
Mr. Wei-tin Chen*		
CSEC and School of Chemistry, University of Edinburgh		

Report:

A series of temperature resolved high resolution X-ray diffraction scans of calcium-doped bismuth ferrites, $Bi_xCa_{1-x}FeO_3$, (x=1 and 0.8) were carried out in order to determine the lattice symmetry of this series of materials and any phase transitions.

The room temperature pattern of BiFeO₃ indicated that the structure is described by the rhombohedral space group R3c (# 161), as previously observed. Bi_{0.8}Ca_{0.2}FeO₃, however, showed some small splittings in several peaks, characteristic of a lower symmetry. It was found that the room temperature symmetry of this phase can be described by the monoclinic space group An (# 9).

Variable temperature powder diffraction patterns for $Bi_{0.8}Ca_{0.2}FeO_3$ were subsequently measured every 50°C, over the temperature range of 50~450°C, in the 20 range of 1~35°. The sample was mounted in a 0.7mm quartz capillary. Nine diffraction patterns were collected for about four hours each. For diffraction patterns above 350°C, the sample undergoes an irreversible chemical phase separation into two perovskite phases (figure 1).

The monoclinic space group An is used for Rietveld refinements for all patterns of Bi_{0.8}Ca_{0.2}FeO₃. From the plot of scaled lattice parameters a_P , b_P and c_P , an An to R3c structural transition occuring between 100~150°C is observed (figure 2).

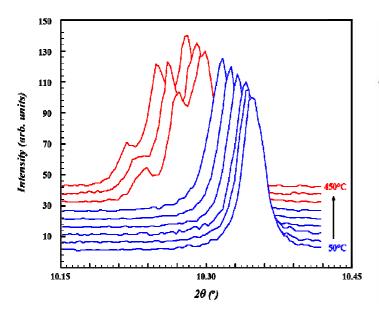


Figure 1. The evolution of the $(1 \ 1 \ 0)$ peak of $Bi_{0.8}Ca_{0.2}FeO_3$ from 50 to 450°C. The patterns have been normalized.

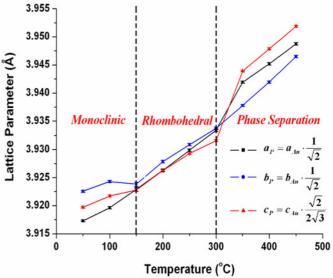


Figure 2. Scaled An lattice parameters of $Bi_{0.8}Ca_{0.2}FeO_{3.}$ A transition to rhombohedral symmetry occurs between 100~150°C, and phase separation occurs above 300°C.