ESRF	Experiment title: In-situ Surface X-ray Scattering Studies of UHV-prepared Pt-Ni Bimetallic Surfaces	Experiment number: SI-1638
Beamline:	Date of experiment:	Date of report:
ID32	from: 22/1/08 to: 29/1/08	29/2/2008
Shifts:	Local contact(s): Jerome Roy	Received at ESRF:
21		
Names and affiliations of applicants (* indicates experimentalists):		
Chris Lucas*, Michael Cormack*, Alex Brownrigg*, Mark Gallagher*(University of Liverpool)		
Paul I nompson* (AMaS)		
Nenad Marl	xovic (Argonne National Laboratory)	

Report:

This experiment was out first attempt to use the UHV-electrochemistry transfer system on ID32. The results have been incorporated into an article that has been submitted as a Faraday Discussion paper. The abstract is attached below:

From ultra high vacuum to the electrochemical interface: X-ray scattering studies of model electrocatalysts

Christopher A. Lucas¹*, Michael Cormack¹, Mark E. Gallagher², Alexander Brownrigg¹, Paul Thompson¹, Ben Fowler¹, Yvonne Gründer³, Jerome Roy³, Vojislav Stamenković⁴ and Nenad M. Marković⁴

¹Oliver Lodge Laboratory, Department of Physics, University of Liverpool, Liverpool, L69 7ZE, UK
²Surface Science Research Centre, University of Liverpool, Liverpool, L69 7ZE, UK
³European Synchrotron Radiation Facility, BP220, 38043 Grenoble, France
⁴Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
*To whom correspondence should be addressed. E-mail: clucas@liv.ac.uk (C.A.L.)

In-situ surface x-ray scattering (SXS) has become a powerful probe of the atomic structure at the metal-electrolyte interface. In this paper we describe an experiment in which a Pt(111) sample is prepared under ultra-high vacuum (UHV) conditions to have a p(2x2) oxygen layer adsorbed on the surface. The

surface is then studied using SXS under UHV conditions before successive transfer to a bulk water environment and then to the electrochemical environment (0.1 M KOH solution) under an applied electrode potential. The Pt surface structure is examined in detail using crystal truncation rod (CTR) measurements under these different conditions. Finally some suggestions for future experiments on alloy materials, using the same methodology, are proposed and discussed in relation to previous results.