	Experiment title: Develpoment of a 2 nd generation spectro- electrochemical cell for in-situ electrolysis	Experiment number: 20-01-681
Beamline:	Date of experiment:	Date of report:
BM 20	From 31/01/2010 to 01/02/2010 03/02/2010 to 06/02/2010 30/06/2010 to 02/072010 11/03/2009 to 12/03/2009 09/06/2009 to 12/06/2009 30/09/2009 to 02/10/2009	17.2.2011
Shifts:	Local contact(s): Christoph Hennig	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

Christoph Hennig*, Koichiro Takao*, Shinobu Tako*, Atsushi Ikeda-Ohno*

Helmholz-Zentrum Dresden-Rossendorf, Institute of Radiochemistry, Bautzner Landstrasse 400, 01314 Dresden Germany

Report:

To clarify the coordination of the limiting U(IV) carbonate complex, we investigated a crystal structure by X-ray diffraction, followed by a comparative investigation of the $[U(CO_3)_n]^{4-2n}$ complex in solid and solution state by U L₃–edge EXAFS spectroscopy [1]. EXAFS is an appropriate method to test if the solution species is preserved in a crystal structure [2] or undergoes a ligand rearrangement [3] during crystallization. Because most of the authors mentioned difficulties to prevent the reoxidation of U(IV), we applied a new electrolysis route to obtain a pure U(IV) carbonate solution.

EXPERIMENTAL. Single crystals were obtained from 0.05 M U(IV) solution in 1 M NaHCO₃ after several weeks without evaporation of the solution (sample **A**). The U(IV) solution sample was prepared by bulk electrolysis of 0.05 M U(VI) carbonate in the 1.0 M NaHCO₃ solution at a constant potential of -1.45 V, using a 4.9 cm² Hg pool electrode, a Pt wire counter electrode, and a Ag/AgCl reference electrode (sample **B**).

RESULTS. The solid compound Na₆[U(CO₃)₅]·12H₂O crystallizes in the triclinic space group $P\overline{1}$ with two [U(CO₃)₅]⁶⁻ anions in the unit cell. The U(IV) atom is coordinated by five carbonate ligands resulting in a coordination number of 10. The carbonate ligands coordinate exclusively in bidentate mode as shown in Fig. 1.

Fig. 1: $[U(CO_3)_5]^{6-}$ anionic complex obtained from single crystal diffraction.

Figure 2 compares the crystalline $Na_6[U(CO_3)_5] \cdot 12H_2O$ with the solution of 0.05 M U(IV) in 1 M NaHCO₃. The carbonate coordination shows a linear arrangement of uranium, the carbon atoms C and the distal oxygen O_{dist} . The bidentate-chelating coordination mode of the carbonate group is related with specific multiple scattering effects. The collinear arrangement of two ligand atoms C and O_{dist} with the absorbing atom results in strong multiple-scattering processes which usually increase the scattering power of a more distant atom like O_{dist} about several magnitudes.

Fig. 2: U L₃-edge k^3 -weighted EXAFS data and the Fourier transforms (FT) of Na₆[U(CO₃)₅]·12H₂O (**A**) and the solution of 0.05 M U(IV) in 1 M NaHCO₃ (**B**). Experimental data – solid line, fit results – dotted line.

The data fit of the solution sample reveal within the typical error limits 5 bidentate coordinated carbonate ligands with distances similar to the ones observed in the solid state. This result corroborate the existence of the $[U(CO_3)_5]^{6-}$ anionic species in solution with the same coordination mode as the solid U(IV) carbonate complex.

REFERENCES

- [1] C. Hennig et al. Dalton Transactions (2010) 39 3774.
- [2] C. Hennig et al. Inorg. Chem. (2008) 47, 1634.
- [3] C. Hennig et al. Inorg. Chem. (2008) 47, 2987.