Sorption reactions in Reactive Hydride Composites (RHC) and partially fluorine substituted composites

K. Suarez Alcantara, U. Boesenberg, J. Bellosta von Colbe, M. Dornheim. Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht, D-21502 Geesthacht Germany.

Hydrogen storage in solid materials is a decisive factor in the application of fuel cell technologies. Fast kinetics and dehydrogenation enthalpies around 25-50 kJ mol⁻¹ H₂ (P_{eq} = 1bar) are needed for compatibility with PEM fuel cells. An approach to improve reaction kinetics and thermodynamics is the destabilization by use of combined systems; especially those consisted of combination of two hydrides. The two hydrides react with each other to form a new compound during dehydrogenation reaction. This formation is exothermic and thus the overall dehydrogenation enthalpy is lowered [1]. These kinds of mixtures are called reactive hydride composites (RHC). The Ca(BH₄)₂+MgH₂→CaH₂+MgB₂+4H₂ as RHC is a promising material for hydrogen storage [2], however kinetics constrains impede their practical application. With the addition of F atoms in the form of a suitable compound a destabilization of the system is expected. The present work study the effect of adding an related F-compound directly to the charged form Ca(BH₄)₂+MgH₂ or the uncharged form CaH₂+MgB₂.

The following Ca-based reactive hydride composites (RHC) were prepared by ball milling: 1) 9CaH₂+10MgB₂+CaF₂ and 2) 10Ca(BH₄)₂+9MgH₂+MgF₂. The as-milled non-hydrogenated (uncharged) composite was heated at 350°C and exposed to hydrogen atmosphere at 130 bar in a PCTPro-2000 (SETARAM Instrumentation) manometric instrument. Dehydrogenation reaction was followed by in situ SR-PXD. Figure 1 presents the in situ SR-PXD characterization of the dehydrogenation behavior of 9CaH2+10MgB2+CaF2 - 1ab composite. After hydrogenation, the formation of Ca(BH4)2, MgH2 and $Ca_4Mg_3H_{14}$ can be observed (bottom of Figure 1). Additionally to the peaks of unreacted CaF_2 and MgB_2 several unidentified peaks are present. As the heating process, at around 160°C, the α - to β -Ca(BH₄)₂ phase transformation is observed. The formation of CaH₂ stared at 325°C, the intensities of CaF₂ and MgB₂ peaks increase. Simultaneously, the peak intensity of hydrogenated phases Ca(BH₄)₂ and MgH₂ decrease. The peaks of $Ca_4Mg_3H_{14}$ and mostly of the original unidentified phases disappear after some time in isothermal conditions. After the dehydrogenation reaction, the presence of CaF₂, MgB₂, CaH₂, Mg and unidentified peaks at 2.8 and 3.0 \AA^{-1} are observed. The presence of Mg and unidentified phases is not desired, because this can reduce the overall reversibility after several cycles. The dehydrogenation of $3CaH_2+4MgB_2+CaF_2$ -1ab was studied elsewhere [3]. In the $3CaH_2+4MgB_2+CaF_2$ composite was not evidence of formation of Ca₄Mg₃H₁₄ after hydrogenation. An unidentified peak at 1.6 Å⁻¹ was also observed in this material.

The dehydrogenation of $10Ca(BH_4)_2+9MgH_2+MgF_2$ monitored by in situ SR-PXD is presented in Figure 2. The as milled material present peaks corresponding to $Ca(BH_4)_2$, MgH_2 and MgF_2 . In addition to the intense broadening of peaks as a result of ball milling, there is the presence of several unidentified peaks. Most of these peaks disappear at the α - to β - $Ca(BH_4)_2$ phase transition temperature. At 350°C, the peaks corresponding to Ca(BH₄)₂ and MgH₂ species vanishes and emerge peaks of CaF₂, CaH₂ and Mg. CaF₂ was not present in the initial mixture, it was formed under dehydrogenation reaction; this indicates a mobility of F atoms during the solid-gas reactions. The formation of CaF₂ is favored thermodynamically, $\Delta H_{298} = -$ 1229.3 kJ mol⁻¹, vs MgF₂ $\Delta H_{298} = -1124$ kJ mol⁻¹ [4].

Conclusions

The formation of CaF_2 is observed after dehydrogenation of $10Ca(BH_4)_2+9MgH_2+MgF_2$. The function of CaF_2 in the RHC is as a doping agent, no formation of fluorine substituted $Ca(BH_4)_2$ is evident. In the long term, the reversibility of the RHC is compromised by the formation of ternary hydride $Ca_4Mg_3H_{14}$ during hydrogenation and by the formation of Mg instead of MgB₂ during dehydrogenation.

References

[4] Kubaschewski O, Alcock CB, Spencer PJ. Materials thermochemistry, 6th ed., Pergamon Press, 1993.

^[1] Barkhordarian G, Klassen T, Dornheim M, Bormann R. Unexpected kinetic effect of MgB_2 in reactive composites containing complex borohydrides. J. Alloys and Compounds 2007;440:L18-L21.

^[2] Barkhordarian G, Jensen TR, Doppiu S, Boesenberg U, Borgschulte A, Gremaud R, Cerenius Y, Dornheim M, Klassen T, Bormann R. Formation of $Ca(BH_4)_2$ from hydrogenation of $CaH_2 + MgB_2$ composite. J. Phys. Chem. C 2008;112:2743-2749.

^[3] Suarez-Alcantara K, Boesenberg U, Zavorotynska O, Bellosta von Colbe J, Dornheim M, Klassen T, Sorption and desorption properties of CaH_2+MgB_2 reactive hydride composite doped with CaF_2 for hydrogen storage. In preparation 2010