European Synchrotron Radiation Facility

INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

Experiment Report Form

ESRF

Experiment	title:
-------------------	--------

XAS to relate Er site with Er 1.5 um photoluminescence, independently from matrix effects.

Experiment number:

08-01-880

Date of report:

Beamline: Date of experiment:

from:

19-4-2007

to: 25-4-2007

Shifts: Local contact(s):

C. Maurizio

Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

C. Maurizio* (GILDA beamline, ESRF)

G. Perotto* (Padova University, Italy)

B. Kalinic* (Padova University, Italy)

G. Mattei (Padova University, Italy)

Report:

To prepare the samples, silica slabs (Herasil 1 by Heraeus) have been sequentially implanted with Er ions at three different energies with a total fluence of 6.6×10^{14} Er⁺/cm², as measured by Rutherford Backscattering Spectrometry (RBS) using a 2 MeV ⁴He⁺ beam. In this way, an almost flat, 70 nm thick, Er profile has been obtained with an Er concentration of about 10^{20} Er/cm³. The Er-implanted slab annealed at 800 °C has been subsequently implanted with Xe ions following the same triple energy scheme to match the Er profile, and at fluence of 7.8×10^{15} Xe⁺/cm² as measured by RBS.

The EXAFS experiment was performed at Er L3-edge at room temperature in fluorescence mode and in grazing incidence geometry to enhance the Er fluorescence signal. The EXAFS analysis was based on the FEFF8-FEFFIT package.

The first shell of atoms surrounding Er is formed by O atoms and likely Si atoms: this second correlation vanishes at high annealing temperature. Preliminary results indicate for the coordination number of the Er-O and Er-Si shell the trend shown in Figure. Further analysis is in progress.

