

t:		
F:		
M. Leitner*, F. Gröstlinger*, B. Sepiol*, and M. Stana*		
University of Vienna, Faculty of Physics, Dynamics of Condensed Systems,		
1		

We proposed to study atomic diffusion in Au_xMg_{1-x} intermetallic alloys by atomic-scale X-ray photon correlation spectroscopy (aXPCS) in order to determine the diffusion mechanisms on both sides of the stoichiometric composition. Measurements on the prepared Au₆₄Mg₃₆ sample were not successful due to an overall low intensity and a very small speckles contrast β of the scattered X-rays. This was because the sample, which was prepared as thin as technically possible considering the softness of this single crystal, was a very strong absorber of 8 keV radiation. Instead, we measured during the beamtime HC-885 in April 2013 an equivalent B2-ordered phase Ag₅₈Mg₄₂. The speckles contrast β was significantly higher due to some improvements in the beamline setup.

The single crystal of $Ag_{58}Mg_{42}$ intermetallic alloy was oriented with its [110] direction normal to the surface. All measurements were done using the iKon-M CCD chip with a sample-to-detector distance of 67 cm. Exposure times were between 4 s for small angles and 8 s for angles larger than $2\theta = 8^{\circ}$. The illuminated area on the sample was determined by slits of $20 \times 20 \ \mu m^2$. Measurements were taken at 423 K.

B2 alloys are usually considered either to be of the triple-defect type, where antisite atoms exist only on one sublattice and vacancies only on the other, or to be of the anti-structure type, where constitutional defects are formed as antisites for an excess A or B atoms, respectively [1]. Ag–

Mg alloys are usually assigned to the second class [2] but some authors report a hybrid behavior. The best fit was achieved mixing $\langle 1 \ 1 \ 0 \rangle$ and $\langle 1 \ 0 \ 0 \rangle$ effective jumps in the proportion 3:1. Our measurements suggest that chemical short-range order is rather weak in this system, thus we assumed that the SRO is constant $I_{SRO}(\mathbf{q}) = 1$. The resulting simultaneous fit to all data, i.e. to the azimuthal and to the polar scans is shown in Fig. 1.

As can be seen from Fig. 1, $\langle 1 \ 1 \ 0 \rangle$ jumps are dominant in Ag₅₈Mg₄₂ with and addition of $\langle 1 \ 0 \ 0 \rangle$ jumps. The diffusion coefficient at 423 K is 2.54(9)×10⁻²³ m²s⁻¹ [3].

Concluding, the microscopic diffusion mechanism in Ag–Mg is similar to that of Fe–Al alloy at high temperatures (above 1200 K) [4] but definitively different than in Fe–Al at about 700 K [5]. One can presume that similar atomistic mechanism is responsible for diffusion in Ag–Mg and in moderately ordered Fe–Al [4]. This mechanism takes place via correlated exchanges of a vacancy leading to farther effective jumps of the majority atoms. The precise ratio of frequencies of $\langle 1 \ 1 \ 0 \rangle$ to $\langle 1 \ 0 \ 0 \rangle$ jumps depends on the particular values of the exchange energy between both atomic species and a vacancy. This is definitely different than in Fe–Al [4], where $\langle 1 \ 1 \ 0 \rangle$ was 2:1 instead of 3:1 in an Ag–Mg intermetallic alloy.

Fig. 1 (left) Inverse correlation time as a function of scattering angle 2 θ ; (right) as a function of azimuthal angle φ for $2\theta = 19^{\circ}$ and $2\theta = 17^{\circ}$ (insert). The simultaneous fit with an atomistic jump model described in the text is shown by the blue line. Figures taken from M. Stana PhD Thesis [3].

This work was supported by grants of the Austrian Science Fund (FWF), contract P22402.

References

- M. Kogachi and T. Haraguchi. "Point defects in B2-type intermetallic compounds". *Materials Science and Engineering A* 312, 189–195 (2001); DOI: 10.1016/s0921-5093(00)01892-x.
- [2] O. Semenova and R. Krachler. "Quasi chemical and defect correlation models for intermetallic compounds with B2structure". J Mater Sci 47, 4439–4448 (2012); DOI: 10.1007/s10853-012-6302-9.
- [3] M. Stana, "Studies of atomic diffusion in binary alloys by aXPCS", SVH-Verlag, 2016. ISBN: 978-3-8381-3960-9.
- [4] R. Weinkamer, P. Fratzl, B. Sepiol and G. Vogl. "Monte Carlo simulation of diffusion in a B2-ordered model alloy". Phys. Rev. B 58, 3082 (1998). DOI: http://dx.doi.org/10.1103/PhysRevB.58.3082.
- [5] M. Stana, M. Ross and B. Sepiol. "Experimental evidence of effective (1 1 1) atomic exchanges in a B2 intermetallic alloy". arXiv:1606.06516 [cond-mat.mtrl-sci].