EUROPEAN SYNCHROTRON RADIATION FACILITY

INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

Experiment Report Form

ESRF	Experiment title: x ray microdiffraction mapping of underdoped La2CuO4+y.	Experiment number:
Beamline:	Date of experiment:	Date of report:
	from: 10/10/2010 to: 13/10/2010	17/11/2011
Shifts:	Local contact(s):	Received at ESRF:
	Manfred Burghammer	
Names and a Alessandro F	affiliations of applicants (* indicates experimentalists): Nice	ola Poccia,

Report: It is well known that the microstructures of the transition-metal oxides, including the high-transition-temperature (high- T_c) copper oxide superconductors, are complex. This is particularly so when there are oxygen interstitials or vacancies which influence the bulk properties. For example, the oxygen interstitials in the spacer layers separating the superconducting CuO₂ planes undergo ordering phenomena in Sr₂O_{1+y}CuO₂, YBa₂Cu₃O_{6+y} and La₂CuO_{4+y} that induce enhancements in the transition temperatures with no changes in hole concentrations. It is also known that complex systems often have a scale-invariant structural organization, but hitherto none had been found in high- T_c materials. Here [1]we report that the ordering of oxygen interstitials in the La₂O_{2+y} spacer layers of La₂CuO_{4+y} high- T_c superconductors is characterized by a fractal distribution up to a maximum limiting size of 400 µm. Intriguingly, these fractal distributions of dopants seem to enhance superconductivity at high temperature.

[1] M. Fratini, N. Poccia, A. Ricci, G. Campi, M. Burghammer, G. Aeppli, and A. Bianconi, Nature **466**, 841 (2010), ISSN 0028-0836, URL <u>http://dx.doi.org/10.1038/nature09260</u>.