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Report: 

In an industrial reactor catalysts are used in pre-shaped forms, i.e. as millimetre-sized 

catalyst bodies. As such, a study examining deactivation in real catalyst samples needs to 

consider the problem from a spatial perspective in order to assess quantitatively, macroscopic 

effects leading to catalyst deactivation e.g. ‘shell progressive’, ‘shrinking core’ and ‘pore 

mouth’ effects. To the best of our knowledge, such a spatially-resolved systematic study on 

the S-poisoning of pre-shaped catalyst materials is not available in the open literature. The 

results contained in this report details a study using both invasive and non-invasive 

characterization techniques in order to understand the process by which sulfur poisoning 

leads to a loss in catalytic activity of Cu/ZnO catalysts for the water gas shift reaction. We 

demonstrate in particular how the technique of XRD-CT revealed that these catalysts 

deactivate via the solid-state transformation of the active Cu/ZnO phase(s) to the inactive 

CuS/ β-ZnS phases respectively. 

 

In order to determine the spatial distribution of the phases present in the extrudate samples, 

2D intensity distribution maps were produced using the following ‘diagnostic’ peaks: Cu 

(111), ZnO (002), CuO (111), CuS (103), Cu2S (102) and β-ZnS (111) although the data are 

of sufficient quality that these maps could equally be produced by using a Rietveld phase 

scale factor. The colour maps show the distribution of the phases presented in the 1D plot 

and furthermore revealed changes in 2D spatial distribution with increasing [H2S]. The first 

key observations concern the phases initially present in the sample and their consumption 



 

with increasing [H2S] in the feed. The metallic Cu phase lost intensity and began to shrink 

towards the core of the extrudate (Figure 1 left hand side). The distribution of CuO (111) 

matches closely that of the metallic Cu phase although the intensity of this signal increased 

between 200 – 350 ppm before being observed at its weakest and smallest (in terms of spatial 

distribution) at 500 ppm. This increase in CuO content between 200 to 350 ppm [H2S] 

relative to the amount of metallic Cu is most likely caused by differences in the passivation 

process. A similar distribution/intensity profile was seen for the ZnO response (although the 

profiled peak comprises a contribution for both CuO (-111) and ZnO(101)). Conversely then 

the new phases that evolved possess an inverse distribution (a broad shell around a core) to 

that of the initial phases with increasing [H2S]. With increasing [H2S] the shell of CuS and β-
ZnS became thicker, concentrating further into the sample. Interestingly the ‘egg white’ 

distribution is itself non-uniform with greater signal intensity seen at the very periphery of 

the sample (termed an ‘egg-shell’ distribution). The Cu2S phase in contrast is very much 

concentrated as an egg-shell.  

 

 
Figure 1. 2D XRD intensity colour maps produced from diagnostic peaks for the various Cu and Zn 

containing crystalline phases. The intensities have been scaled to the maximum and minimum values for 

the data presented since the absolute values for each phase vary.         

 

Tomographic XRD-CT confirmed that the formation of the β-ZnS phase and previously 

unobserved crystalline CuS and Cu2S sulfided phases, formed via the reaction between H2S 

and the initial Cu and ZnO phases is the principle mode by which sulfur poisons 

Cu/ZnO/Al2O3 catalyst bodies for the WGS reaction. The resultant sulfided CuS phase is also 

mobile leading to Cu redistribution towards the sample edge, leading to promoted growth 

(sintering) of the Cu species which will also adversely affect activity. The ability of the 

Cu/ZnO catalyst body material to act as a H2S trap ensures against a rapid loss of catalyst 

activity although it appears that the catalyst body becomes inactive before all Cu/ZnO (that 

which remains in the core) has been sulfided. This suggests a diffusion problem related 

caused by the formation of Cu/Zn sulfided phases (from the Cu/ZnO phases) either by the 

blocking of pores by mobile sulfides or else through destruction of the internal pore 

structure.  


