ESRF	Experiment title: A detailed high-resolution X-ray diffraction study of atomic structure distortions in untwinned LaCoO3 single crystal across spin-state and metal-insulator transitions	Experiment number: 01-02-992
Beamline: BM-01	Date of experiment: from: 27.02.2015 to: 03.03.2015	Date of report : 15.08.2015
Shifts: 12	Local contact(s): Dr. Dmitry CHERNYSHEV	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists)		
Dr. Vadim SIKOLENKO - Hahn-Meitner-Institut, Glienicker str. 100 Berlin D-14109 Germany		
Mr. Vadim EFIMOV*- Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia		

Perovskite-like lanthanum cobalt oxide LaCoO₃ is a fascinating material studied since the 1950's with many controversial explanations of its peculiar structural [1], transport [2] and magnetic [3] properties. With temperature increase a maximum of the magnetic susceptibility [4] and thermal expansion coefficient was observed near 120 K whereas a second anomaly [1-3] followed by a plateau at 500 K ÷ 520 K is associated with the metal-insulator transition. Goodenough et al. [5] originally interpreted these magnetic transitions as spin-state transitions of Co³⁺ ions from the nonmagnetic ground low-spin state (LS; t⁶_{2g}e⁰_g, *S* = 0) to a high-spin state (HS; t⁴_{2g} e²_g, *S* = 2) due to the close values of the intra-atomic exchange energy (*J_H*) and the crystal field splitting (10*Dq*) at the Co³⁺ sites. These spin-state transitions are further manifested by observable changes in the crystal structure with increasing spin state and produce anomalies in thermal expansion since the HS Co³⁺ has a much larger radius (0.61 Å) than the LS state (0.54 Å) [6].

XRD experiments of $LaCoO_3$ were carried out at the BM01A beamline in the temperature range 80 - 800 K on the single crystal diffractometer KUMA.

The obtained X-ray powder diffraction data were analyzed by a Rietveld method using FullProf program. All observed Bragg peaks for LaCoO₃ in the temperature range from 10 K to 800 K were indexed in the frame of the hombohedral R-3c space group.

The temperature dependence of the MSRD_{||} and diffraction Debye-Waller factor or uncorrelated mean squared displacement (MSD) for Co and O atoms in LaCoO₃ is shown in **Fig. 1**. The DCF (difference between MSRD_{||} and MSD), reflecting the correlation in atomic motion of distant atoms (cobalt and oxygen), grows with temperature (Figure 1). Such growth of the strength interactions between atoms in the Co-O pairs can be associated obviously with gradual transition from HS Co³⁺ ions to IS spin state.

Fig. 1. Temperature dependence of MSD calculated from XRD) for cobalt (squeres) and oxygen (empty circles) and correlated $MSRD_{II}$ (full circles) for Co-O bond in LaCoO₃.

Fig. 2: The temperature dependence of the Co–O bond lengths (a) for LaCoO₃ obtained by EXAFS and XPD; (b) temperature dependence of U_{\parallel} and U_{\perp} of O for LaCoO₃ sample.

Figure 2 shows the temperature dependence of Co–O bond lengths obtained from the EXAFS and XPD data on LaCoO₃ powder as well as oxygen displacement parameters U_{||} and U_⊥ in Co-O-Co bond extracted from single crystal X-ray diffraction. We note that the local interatomic distance $< r_{Co-O} > = < |r_O - r_{Co}| >$ probed by EXAFS is usually larger than the equilibrium crystallographic distance between average positions R_{Co-O} = $|<r_O > - < r_{Co} > |$ measured by diffraction. The difference between $< r_{Co-O} >$ and R_{Co-O} is associated with the influence of the *perpendicular* MSRD_⊥ $<\Delta\sigma^2_{\perp}(Co-O)>$, i.e. the thermal atomic displacement in the direction perpendicular to the Co-O bond [41, 42]: $< r_{Co-O} > = R_{Co-O} + <\Delta\sigma^2_{\perp}(Co-O)>/2R_{Co-O}$

However, the Co–O bond lengths determined from the EXAFS analysis are gradually shorten with respect to the ones obtained from the diffraction experiments with temperature increasing up to a maximum difference around the metal-insulator transition temperature $T_{MI} \sim 550$ K (**Fig. 2a**). It indicates an anomalous behavior because one would normally expect the EXAFS-measured distances to be essentially longer than the ones obtained from diffraction (see to Eq. 1). Taking into account that oxygen U_{\perp} is essential increasing with temperature in contrast to U_{II} (**Fig. 2b**), we conclude that such effect on **Fig. 2a** could only be associated with the cobalt spin-state transition. Considering the difference in ions radius of Co³⁺ for HS (0.61 Å), LS (0.54 Å) and IS (0.56 Å) and futures between EXAFS and XRD a gradual increase of the deviation of Co–O bond lengths obtained by EXAFS and diffraction measurements would likely correspond to the Co³⁺ spin-state transition from HS fraction (located on the surface of ~0.5 mkm powders/granules) to high-hybridized metallic IS one in basic LS matrix, whereas a minimal difference of the Co–O bond lengths around ~ 700 K could be associated with a gradual growth of the long-range IS domains (up to saturation) from basic LS fraction and possible appearance of the small concentration of HS domains.

Moreover, we observed unusual increase of MSD_{Co-O} below ~50 K. Such effect was impossible to resolve in the neutron powder diffraction [1] due to lower resolution(in determination of cobalt ADP compared to X-ray) as well as due to the difference in contrast for Co and O atoms for neutrons and X-rays. Such small increase of the MSD_{Co-O} could be explained by coexistence of several Co^{3+} spin states with substantially different ion radiuses (i.e. incommensurability effect of Co^{3+} ions radii within granules) such as HS in the distorted surface layers of the LaCoO₃ granules with basic LS phase in the bulk and highly-hybridized IS between them.

References:

[1] P Radaelli and S. Cheong, Phys. Rev. B 66, 094408 (2002);

- [2] R. Schmidt, J. Wu, C. Leighton, and I. Terry, Phys. Rev. B 79, 125105 (2009).
- [3] C. Zobel, et al., Phys. Rev. B 66 R020402 (2002).
- [4] T. Kyomen, et al., Phys. Rev. B 67 144424 (2003).

[5] M. A. Senaris-Rodriguez, J. B. Goodenough, J. Solid State Chem. 118, 323 (1995).

[6] R.Shannon, Acta Crystallogr., Sect.A: Cryst. Phys., Diffr., Theor.Gen.Crystallogr.32, 751 (1976).

Published article: V V Sikolenko, O Zaharko, I O Troyanchuk, V V Efimov, E A Efimova, D V Karpinsky, S Pascarelli, A Ignatov, D.Aquilanti, D Prabhakaran, *Journal of Physics: Conference Series* **712** (2016) 012118.