ESRF	Experiment title: Probing peptide fibrillation in the convective flow of an evaporating droplet	Experiment number: SC3572
Beamline:	Date of experiment:	Date of report:
ID13	from: 7.11.2012 to: 8.11.2012	30.8.2013 update 7.12.2012 first Rep.
Shifts:	Local contact(s): Nuria Benseny Cases	Received at ESRF:
9		
Names and affiliations of applicants (* indicates experimentalists):		

*Christian Riekel: ESRF

Enzo Di Fabrizio,*Angelo Accardo and *Giovanni Marinaro: Istituto Italiano di Tecnologia (IIT), Nanostructures Department, via Morego 30, 16163 Genova, Italy

Report:

We studied 4 materials showing amyloidic fibrillation by FTIR: (a) two designer synthetic peptides which were acetylated at the N-terminus: Ac-ID₃ (IVD), Ac-LD₆ (LIVAGD); (b) human amyloid- β (1-42), KE₇; (c) human IAPP fragment (22-27), NFGAIL). Peptide solutions in D₂O of 1 mg/ml and 0.1 mg/ml were used for the experiments. We deposited droplets of about 4 μ L by a micropipette on a superhydrophilic BaF₂ substrate which was produced for the experiments by A.A. at IIT-Genova. Superhydrophilic properties were obtained by plasma deposition of nanostructured poly(methylmethacrylate) (PMMA). The droplets formed during evaporation a coffee-ring which allowed keeping the probed volume for the transmission experiments sufficiently low. Experiments were performed with a 5 μ m FTIR beam.

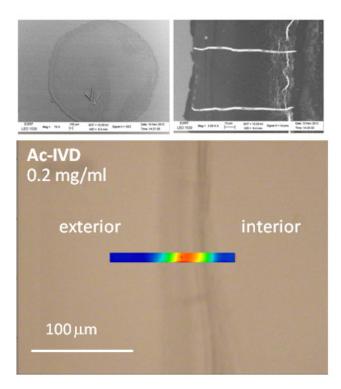


Figure 1. Left: SEM image of Ac-ID₃ coffee-ring residues; Right: Higher-resolution SEM image showing the formation of fibrillar structures at the residue-interior (right side) Bottom: FTIR raster-scan across Ac-IVD coffee-ring with 5μ m(hor)x1 μ m(vert steps. The colour is scaled to the intensity of the Amide I band β sheet peak (blue: lowest, orange: highest)

The main aim of this experiment was to get information on the mechanistic steps involved in amyloidic fibrillation.^{1,2} The superhydrophilic substrate resulted in a pinning of the triple-phase contact-line during coffee-ring formation which allowed continuously probing of the same area of the droplet during evaporation. We performed a mesh of successive line-scans with 6-8 steps across the triple-phase contact-line until residue formation. Typical drying times were 20-40 minutes for the 0.1 mg/ml concentrations.

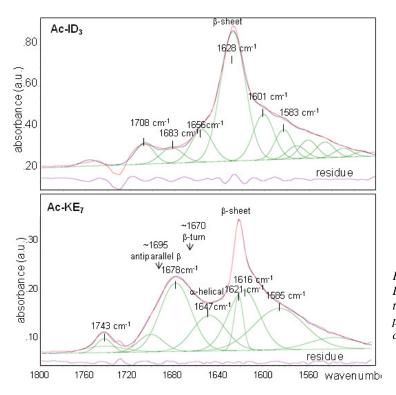


Figure 2. Amide 1 band of $Ac-ID_3$ and $Ac-KE_7$. The $Ac-LD_6$ and Ac-NFGAIL spectra are practically identical to $Ac-ID_3$. The spectra have been fitted by Gaussian profiles. The assignment of the main bands to conformations is indicated.

We analyzed the spectra with the ThermoScientific OMNIC 8 software. Parallel β -sheet conformations were identified for Ac-ID₃, Ac-LD₆ and Ac-NFGAIL. (Figure 2,top) The Ac-KE₇ spectrum appears to be more complex as a peak close to an expected antiparallel β -sheet conformation is observed. (Figure 2, bottom) A β -turn conformation can, however, not be completely excluded. We note also the presence of an α -helical band although we do not see a spatial separation of this band from the β -sheet band in the raster-scans. We have not been able observing intermediare conformations (e.g. α -helical) during the raster-scans as the coffee-ring formation was too fast. Whether the α -helical band for Ac-KE₇ is due to a separate phase mixed with the β -sheet phase cannot be determined at present.

References

- 1 Hauser, C. A. E. *et al.* Natural tri- to hexapeptides self-assemble in water to amyloid beta-type fiber aggregates by unexpected alpha-helical intermediate structures. *Proceedings of the National Academy of Sciences of the United States of America* **108**, 1361-1366, doi:DOI 10.1073/pnas.1014796108 (2011).
- 2 Lakshmanan, A. *et al.* Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis. *PNAS* **110**, 519-524, doi:DOI 10.1073/pnas.1217742110 (2013).