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Report: 
 
Scientific background :  

The oxygen-evolving complex (OEC) located in the PSII membrane-
bound protein in plant, algae, and cyanobacteria catalyses the water-oxidation 
reaction. The OEC, with four Mn and one Ca, couples the 4-electron 
chemistry of water oxidation with the one-electron photochemistry of the 
reaction center by sequentially storing oxidizing equivalents through five 
intermediate S-states (Si, i = 0 to 4), before one molecule of dioxygen is 
evolved (Fig. 1).1 The Mn4Ca cluster provides a high degree of redox and 
chemical flexibility so that several oxidizing equivalents can be stored during 
the S-state cycle. To understand the mechanism of water oxidation in detail, it 
is crucial to know whether the extracted electrons are directly derived from 
bound water, from the Mn atoms, or from any other parts of the OEC 
accompanying each S-state transition.2  

Previously, we have used 1s2p direct resonant inelastic X-ray 
scattering (RIXS) to study the electronic structure of the Mn4Ca cluster in the S1 and S2 states.3,4 The result 
showed that Mn in the S1 state contains oxidation states III and IV; thus providing confirmation for the 
(III2,IV2) assignment in the S1 state. We also found strong covalency for the electronic configuration in the 
OEC and we conclude that the electron is transferred from a strongly delocalized orbital for the S1 to S2 
transition.  
Results :  

During the last beamtime (Dec 2012) at ID26, we measured 1s2p RIXS data on all S-states of PSII 
that are accessible using the flash (F)-freeze technique (0F (dark state), 1F, 2F, and 3F; cf. Fig. 1) with higher 
energy resolution (~0.6 eV) than previously used (~1.2 eV) to gain a comprehensive picture of the Mn 
electronic structure and its changes during the catalytic cycle in PSII. Great care was taken to monitor the 

modification of the electronic structure induced by 
the X-ray beam. The maximum acceptable X-ray 
exposure time was determined to 5s and the samples 
thus had to be frequently moved under the beam. 
Furthermore, a large number of PSII samples was 
measured to obtain sufficient statistics (Mn 
concentration ~1mM). The RIXS planes are 
constructed by recording several line scans, each spot 
with 5s exposure time. In order to obtain the RIXS 
plane with correct normalization, the Mn 
concentration had to be determined for each spot. A 
set of macros was written by the BL staff and ESRF 
software groups to deal with this problem. 

The S1 and S2 spectra are shown in Fig. 2. Deconvolution of flash-induced spectra (1F, 2F, and 3F) to 
get pure S-state spectra is in progress based on the EPR (electron paramagnetic resonance spectroscopy) data 
which was collected prior to the beamtime. We find very similar spectral shapes for all S-states confirming 
the highly covalent character of Mn in the OEC. The higher spectral resolution achieved on ID26 allows 
identification of three prominent spectral features. Full theoretical calculations of 1s2p RIXS in such 
complex systems is currently not possible. Therefore, we have to rely on comparison with model systems. 

 
 

 
 
Fig. 1: Kok Cycle for water 
splitting reaction in PSII. 
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Fig. 2: K absorption pre-edge 1s2p RIXS plane for 
PSII (A) S1 and (B) S2 states. 



 

We collected 1s2p RIXS spectra of a series of model compounds (MnxCay compounds synthesized by 
G. Christou’s group in U. Florida, and different structural models of the CaMn3 subsite of the OEC, and 
tetranuclear heterometallic trimanganese dioxo clusters where the cation is varied [Mn3M(µ4-O)(µ2-O)] (M: 
redox-inactive cation such as Ca, Sr, Zn, Sc) synthesized by T. Agapie’s group in Caltech, USA (a total of 22 
model systems; examples are given in Fig. 3 and Fig . 4).5,6,7 A detailed analysis is currently under way. We 
are furthermore pursuing theoretical calculations using these model complexes to understand the electronic 
structure of the Mn4Ca cluster and its changes during the catalytic reaction. Since the full RIXS process 
cannot be simulated, such calculations have to rationalize the concept of “formal oxidation state” and enable 
to extract quantities that can be set in context with experiment, e.g. spin and charge density on Mn. 

 We consider our beamtime on ID26 a success and an excellent set of data was obtained. We note that 
such experiments are very challenging due to the radiation sensitivity of the samples and the low Mn 
concentration. 

 
 

 
 
 
 
 
 

MnIII
3Ca 

                    A: (MnII
2MnIII

2)                          B: (MnIVMnIII
2Ca)                       C: (MnIII

2Ca2) 

    
                                              D: (MnIII

3Ca)                                         E: (MnIV
3Ca)  

                                           
 
Fig. 3: K absorption pre-edge RIXS plane for (A)LMnII

2MnIII
2O1(OAc)3(OTf)2; (B) 

[LMnIVMnIII
2CaO2(OAc)2(OTf)(DME)](OTf)2; (C) (MnIII)2(CaII)2HMP; (D) 

[LMnIII
3CaO2(OAc)2(OTf)(DME)](OTf); (E) LMnIV

3CaO4(OAc)3THF. 
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Fig. 4: K absorption pre-edge RIXS plane for a series of heteronuclear MnIV

3MO4(OAc)3 (M: Sr, Sc, 
Y) complexes; (A) [LMnIV

3SrO4(OAc)3DMF]2 (B)[LMnIV
3ScO4(OAc)3](OTf) and (C) 

[LMnIV
3YO4(OAc)3(DMF)2](OTf). 

 


