

ESRF	Experiment title: Large and tunable increase in magnetic anisotropy upon Co doping in monodispersed maghemite nanoparticles	Experiment number : MA-1680
Beamline:	Date of experiment:	Date of report:
BM30B	from: 26/09/2012 to: 02/10/2012	14/10/2013
Shifts:	Local contact(s):	Received at ESRF:
18	Olivier PROUX, Olivier.proux@esrf.fr	14/10/2013
Names and affiliations of applicants (* indicates experimentalists):		
- Dr. Isabelle MAURIN*,		
- Pr. Jean-Pierre BOILOT,		
- Dr. Thierry GACOIN,		
- Lili LU*,		
- Dr. Charlotte VICHERY*,		
Laboratoire de Physique de la Matière Condensée, UMR7643, CNRS-Ecole Polytechnique, 91128 Palaiseau		
Cedex France.		

Report:

Introduction of Cobalt Ions in γ-Fe₂O₃ Nanoparticles by Direct Coprecipitation or Postsynthesis Adsorption: Dopant Localization and Magnetic Anisotropy

by Charlotte Vichery,¹ Isabelle Maurin,^{1*} Olivier Proux,^{2,3} Isabelle Kieffer,^{2,3} Jean-Louis Hazemann,^{2,4} Robert Cortès,¹ Jean-Pierre Boilot¹ and Thierry Gacoin¹

¹ Physique de la Matière Condensée, UMR7643, CNRS - Ecole Polytechnique, 91128 Palaiseau, France

² BM30B/FAME beamline, European Radiation Synchrotron Facility, 38043 Grenoble cedex 9, France

³ Observatoire des Sciences de l'Univers de Grenoble, UMS 832, CNRS - Université Joseph Fourier, 38041

Grenoble cedex 9, France

⁴ Institut Néel, UPR 2940, CNRS - Université Joseph Fourier, 25 avenue des Martyrs, BP 166, 38042 Grenoble cedex 9, France

ABSTRACT: The influence of cobalt doping on the magnetic anisotropy of γ -Fe₂O₃ nanoparticles has been investigated using two different approaches: (i) simultaneous precipitation of Fe²⁺, Fe³⁺ and Co²⁺ precursors in water and (ii) adsorption of Co²⁺ ions onto the surface of preformed iron oxide particles followed by diffusion in the solid phase upon heat treatment. The incorporation of small amounts of Co dopants, less than 1% atomic, was monitored by magnetization measurements combined with X-ray absorption spectroscopy experiments at the Co K-edge. These latter measurements were carried out in fluorescence mode using a crystal analyzer spectrometer for an enhanced sensitivity. Analyses of the X-ray absorption fine structures allowed for unraveling the differences in local atomic structure and valence state of Co in the two series of samples. A thermally-activated diffusion in the spinel lattice was observed in the 250-300°C range, leading to a substantial increase in magnetocrystalline anisotropy. At higher annealing temperature, magnetic anisotropy was still found to increase due to an enhanced surface contribution associated with deshydroxilation of terminal Fe atoms. This study not only provides direct correlations between magnetic anisotropy and dopant localization in Co doped γ -Fe₂O₃ but also demonstrates for the first time that simultaneous coprecipitation of Fe²⁺, Fe³⁺ and Co²⁺ may actually lead to heterogeneous doping, with a significant part of the Co dopants adsorbed at the particle surface.

in J. Phys. Chem. C 117 (2013) 19672–19683.