

ESRF	

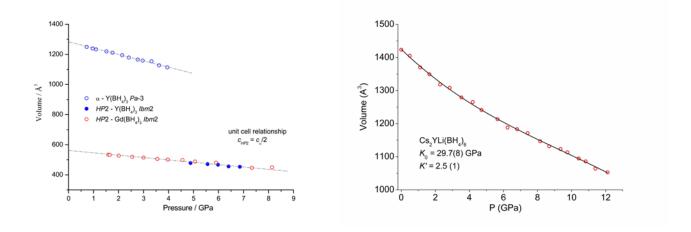
-
Framework and molecular metal borohydrides: high pressure
studes assisted by metal oxides analogy.

Experiment number:

01-02-1023

Beamline:	Date of experiment:	Date of report:	
BM01-A	from: June 12	to: June 15, 2013	15 September 2014
Shifts: 12	Local contact(s):		Received at ESRF:
	Dr. V. Dmitriev		

Names and affiliations of applicants (* indicates experimentalists):


*P. Schouwink, Laboratoire de Cristallographie, Genève, Switzerland

*N. Tumanov, Université de Louvain, Belgium

Experiment title:

This proposal was designed at evaluating the pressure impact on a new series of up to date over 30 metal borohydride materials crystallizing with the perovskite type structure [1]. The perovskite ABX_3 structure type is built of an octahedral framework where the vacancies are filled with large countercations. Orbital-induced effects aside, the instabilities in this structure type are dominated by the behaviour of phonons. In the case of $AB(BH_4)_3$ we have found that very interesting interactions take place between the phonons molecular vibrations B-H of the tetrahydroborate anion.

These interactions cause the stabilization of large superstructures in the high-temperature polymorphs. The present experiments compare the impact of a vacant and filled *A*-site on the pressure stability of the octahedral framework (figure 1) in ReO₃-type and perovskite-type metal borohydrides. The materials are extremely soft with bulk moduli around 25-30 GPa. This means that the lanthanide luminescence studied in a new related family of perovskite-type borohydride solid state phosphors [1] should show a strong pressure-dependency, which can provide useful pressure standards in the low pressure regime. For compounds with 100 % vacancies on the *A*-site it was found that the *HP*-phase phase transformations are not reversible, in contrast to the well-known transition reported for metal oxides of the ReO₃-type. We expect this to be related to *HP*-induced lattice instabilities that have their origin in weak interactions and the tetrahedral geometry of the BH₄⁻ anion, both features entirely unknown for metal oxide perovskites, and which are discussed in detail in [1].

Figure 1. Left: Compressibility of a model-system double perovskite-type metal borohydride. The bulk modulus was determined from a fitted 3^{rd} order Birch-Murnaghan EoS. **Right:** Compressibility and first-order phase transition of ReO₃-type metal borohydrides $Y(BH_4)_3$ and $Gd(BH_4)_3$, dotted lines are eye-guides.

High pressure polymorphism of Mn(BH₄)₂ was also studied during this experiment. Two samples of Mn(BH₄)₂ were used with LiCl impurity and with NaBH₄ impurity. We found that Mn(BH₄)₂ behaves similarly in both experiments, undergoing two phase transitions: the first phase transition occurs at approximately the same pressure for both experiments, whereas the pressure value for the second phase transition lies in a wider range. As will be discussed below, we suggest the impurity to be responsible for such behavior. The first phase transition Mn(BH₄)₂ experiences in the range of 0.5-2.0 GPa, which goes with a coexistence of two phases: the initial phase and the emerged high-pressure phase. The second phase transition occurs between 8.5 and 11.5 GPa, only with a slight change in the diffraction pattern; but appearance of new superstructure peaks allowed us to identify the second high-pressure phase. The structure determination revealed that that the first high-pressure phase of Mn(BH₄)₂ is isostructural to a high-pressure phase of Mg(BH₄)₂, i.e., δ -Mg(BH₄)₂. This new phase, which we named δ -Mn(BH₄)₂ by analogy with δ -Mg(BH₄)₂, was refined in P4₂nm, by using crystal structure of δ -Mg(BH₄)₂ as an initial model (replacing Mg for Mn atom). The structure of α -Mn(BH₄)₂ is characterized by a significant amount of empty space; during the first phase transition, which is the first-order transition, α-Mn(BH₄)₂ collapses, losing 17% of volume, and rearranges into δ -Mn(BH₄)₂. As its Mg analog, δ -Mn(BH₄)₂ consists of two interpenetrated Mn(BH₄)₂ frameworks, similar to the Cu₂O structure, showing no empty voids in the structure and has a volumetric density of hydrogen of 125 g H₂/L at a pressure of 1 GPa. The second phase to δ' -Mn(BH₄)₂ transition in both experiments occurs near 8.5-11.5 GPa and results in a few additional new peaks in the diffraction pattern that indicate a superstructure, emerging mostly due to the ordering of hydrogen atoms. Structure of δ '-Mn(BH₄)₂ is very similar to the first high-pressure phase and is comprised of two interpenetrated Mn(BH₄)₂ frameworks as well, with the ordering of hydrogen atoms being more pronounced. The latter is the reason for a larger unit cell and the appearance of new superstructure peaks.

[1] P. Schouwink, M. B. Ley, A. Tissot, H. Hagemann, T. R. Jensen, L'. Smrčok, R. Černý, Nature Comm., *submitted*.