ESRF	Experiment title: Strain mechanisms in lead-free piezoelectric ceramics investigated at the single grain level	Experiment number: MA-1919
Beamline : ID11	Date of experiment: from: 06/12/2013 to: 10/12/2013	Date of report : 01/06/2015
Shifts: 12	Local contact(s): Jon Wright	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		
Jette Oddershede ^a *, Marta Majkut ^a *, Quinghua Cao ^{b*} , Søren Schmidt ^a and John E. Daniels ^{b*}		
^a DTU Physics, Lyngby, Denmark		

^bUNSW Australia, Sydney, Australia

Report:

Based on the data collected at the beamtime a method for the extension of the 3D-XRD technique to allow the extraction of domain volume fractions in polycrystalline ferroic materials was developed and presented [1]. This method gives access to quantitative domain volume fractions of hundreds of independent embedded grains within a bulk sample. Such information is critical to furthering our understanding of the grain-scale interactions of ferroic domains and their influence on bulk properties. The method also provides a validation tool for mesoscopic ferroic domain modelling efforts.

The mathematical formulations presented in the publication are applied to tetragonal coarsegrained $Ba_{0.88}Ca_{0.12}Zr_{0.06}Ti_{0.94}O_3$ and rhombohedral fine-grained (0.82) $Bi_{0.5}Na_{0.5}TiO_3$ -(0.18) $Bi_{0.5}K_{0.5}TiO_3$ electroceramic materials. The fitted volume fraction information is used to calculate grain-scale non-180° ferroelectric domain switching strains. The absolute errors are found to be approximately 0.01% and 0.03% for the tetragonal and rhombohedral cases, which had maximum theoretical domain switching strains of 0.47% and 0.54%, respectively. Limitations and possible extensions of the technique are discussed.

[1] Jette Oddershede, Marta Majkut, Qinghua Cao, Søren Schmidt, Jonathan P. Wright, Peter Kenesei and John E. Daniels. *J. Appl. Cryst.* (2015). **48**, 882–889