ESRF	XAFS study of single crystalline $Ce_{1-x}Pr_xO_{2-\delta}$ mixed ternary rare earth thin films on Si (111)	Experiment number: HC-1010
Beamline: BM 08	Date of experiment: from: 6/9/13 to: 12/9/13	Date of report: 5/9/2016
Shifts: 18	Local contact(s): F. d'Acapito	
Names and affiliations of applicants (* indicates experimentalists):		
Gang Niu, IHP Germany		
Federico Boscherini, Univ. Bologna		
Francesco D'Acapito, CNR IOM, c/o ESRF		
Thomas Schroeder, IHP Germany		
Marvin Zoellner, IHP Germany		

Report:

The local electronic and atomic structure of (111)-oriented, single crystalline mixed $Ce_{1-x}Pr_xO_{2-\delta}$ (x= 0, 0.1 and 0.6) epitaxial thin films on silicon substrates have been investigated in view of engineering redox properties of complex oxide films. X-ray absorption near edge structure reveals that Pr shows only +3 valence and Ce shows only nominal +4 valence in mixed oxides. Extended x-ray absorption fine structure (EXAFS) studies were performed at K edges of Ce and Pr using a specially designed monochromator system for high energy measurements. They demonstrate that the fluorite lattice of ceria (CeO_2) is almost not perturbed for x=0.1 sample, while higher Pr concentration (x=0.6) not only generates a higher disorder level (thus more disordered oxygen) but also causes a significant reduction of Ce–O interatomic distances. The valence states of the cations were also examined by techniques operating in highly reducing environments: scanning transmission electron microscopy-electron energy loss spectroscopy and X-ray photoemission spectroscopy; in these reducing environments, evidence for the presence of Ce3+ was clearly found for the higher Pr concentration. Thus, the introduction of Pr3+ into CeO₂ strongly enhances the oxygen exchange properties of CeO₂. This improved oxygen mobility properties of CeO₂ are attributed to the lattice disorder induced by Pr mixing in the CeO₂ fluorite lattice, as demonstrated by EXAFS measurements. Thus, a comprehensive picture of the modifications of the atomic and electronic structure of Ce_{1-x}Pr_xO_{2-δ} epitaxial films and their relation is obtained.

These results have been published in Niu et al., Jour. Appl. Phys. 116, 123515 (2014).

Ce K-edge XAFS data. (a) back ground subtracted and (b) Fourier Transform and fits.

Pr K-edge XAFS data. (a) back ground subtracted and (b) Fourier Transform and fits.

JOURNAL OF APPLIED PHYSICS 116, 123515 (2014)

On the local electronic and atomic structure of $Ce_{1-x}Pr_xO_{2-\delta}$ epitaxial films on Si

Gang Niu,^{1,a)} Markus Andreas Schubert,¹ Francesco d'Acapito,² Marvin Hartwig Zoellner,¹ Thomas Schroeder,^{1,3} and Federico Boscherini^{2,4} ¹*IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany* ²*Consiglio Nazionale delle Ricerche, Istituto Officina dei Materiali, Operative Group in Grenoble, c/o European Synchrotron Radiation Facility, B.P. 220, 38043 Grenoble, France* ³*BTU Cottbus-Senftenberg, Konrad-Zuse-Str. 1, 03046 Cottbus, Germany* ⁴*Department of Physics and Astronomy, University of Bologna, via le C. Berti Pichat 6/2, 40127 Bologna, Italy*