ESRF	Experiment title: Metal borohydrides with perovskite structure type: ionic conduction and hydrogen storage.	Experiment number: 01-02-1037				
Beamline:	Date of experiment : from: January 29 to: February 1, 2014	Date of report : September 2014				
Shifts: 9	Local contact(s): Dr. V. Diadkin	Received at ESRF:				
Names and affiliations of applicants (* indicates experimentalists): *R. Cerny, Laboratoire de Cristallographie, Geneve, Switzerland P. Schouwink, Laboratoire de Cristallographie, Geneve, Switzerland						
 *Ya. Filinchuk, Université de Louvain, Belgium *Iu. Dovgaliuk, Université de Louvain, Belgium *K. Robeyns, Université de Louvain, Belgium 						
*G. Springuel, Université de Louvain, Belgium						

Many different systems containing perovskite borohydrides $AB(BH_4)_3$ with A = alkali metal, B = rare-earth were studied. Two typical examples are given below:

$LiBH_4 + KBH_4 + YbCl_3$

The perovskite phase KYb(BH₄)₃ is formed in ball milled mixtures 12:4:3. At RT the perovskite is simple cubic, and at 95°C it transforms to the orthorhombic phase with 8 × superstructure SQRT(2) / 2 / 2SQRT(2) which was not reported among oxide perovskites [1]:

Compound	SG	$V(\text{\AA}^3)$	V/Z (Å ³)	<i>a</i> (Å)	b (Å)	<i>c</i> (Å)	T/K
LT-KYb(BH ₄) ₃	<i>P</i> -43 <i>m</i>	176.3	176.3	5.607			298
HT-KYb(BH ₄) ₃	$Pm2_1b$	1423.8	177.9	7.832	11.267	16.135	403

Evolution of unit cell volume and lattice parameters with temperature is shown on Figure 1. The decrease of the cell volume above 180°C is due to dissolution of chloride from LiCl in the perovskite.

Lanthanides form the basis of RGB (red-green-blue) colours in LED-based solid-state lighting with many important applications. Room temperature emission and excitation

spectra of KYb(BH₄)₃ were measured in our laboratory down to 10 K. The Yb²⁺ emission is centred at 520 nm, when excited in the UV at 355 nm [1].

Figure 1: Evolution of unit cell volume and lattice parameters with temperature for cubic and orthorhombic perovskite KYb(BH₄)₃.

$LiBH_4 + KBH_4 + Gd(BH_4)_3$

Gadolinium crystals are of interest as host materials for trivalent lanthanides based phosphors. Gadolinium forms double-perovskite phases $Cs_3Gd(BH_4)_6$ and $Cs_2LiGd(BH_4)_6$ with bigger alkali metal [1]. A different phase is formed with smaller alkali metal K in the mixtures 4:3:3, but also without lithium in mixtures 0:3:2 as shown on the T-ramp of 4:3:3 mixture in Figure 2.

Figure 2: T-ramp of the ball-milled mixture 4 LiBH₄ + 3 KBH₄ + 3 Gd(BH₄)₃ showing a new phase formed by ball mailing at RT, and disappearing in the pattern no. 53. at T ~ 150°C.

Despite a great effort invested in its crystal structure solution, no satisfactory model has been obtained yet.

[1] Schouwink et al., Nature Comm., submitted.