| ESRF                                                                                  | <b>Experiment title:</b><br>XAFS study of the local order and structure in<br>$Y_{2-x}(Zn/Mg)_xRu_2O_7$ pyrochlores, potential new cathodes<br>for solid-oxide fuel cells |     |            | <b>Experiment</b><br><b>number</b> :<br>MA-2162 |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|-------------------------------------------------|
| Beamline:                                                                             | Date of experiment:                                                                                                                                                       |     |            | Date of report:                                 |
| BM25A                                                                                 | from: 14/03/2014                                                                                                                                                          | to: | 19/03/2014 |                                                 |
|                                                                                       | from: 10/09/2014                                                                                                                                                          | to: | 13/09/2014 |                                                 |
| Shifts:                                                                               | Local contact(s):                                                                                                                                                         |     |            | Received at ESRF:                               |
| 15                                                                                    | MUNOZ-NOVAL Álvaro                                                                                                                                                        |     |            |                                                 |
| Names and affiliations of applicants (* indicates experimentalists):                  |                                                                                                                                                                           |     |            |                                                 |
| Carlo Castellano* (Università degli Studi di Milano, Dip. di Chimica, Milano, Italy)  |                                                                                                                                                                           |     |            |                                                 |
| Giulia Berti* (Politecnico di Milano, Dip. di Fisica, Milano, Italy)                  |                                                                                                                                                                           |     |            |                                                 |
| Alberto Brambilla* (Politecnico di Milano, Dip. di Fisica, Milano, Italy)             |                                                                                                                                                                           |     |            |                                                 |
| Alberto Calloni (Politecnico di Milano, Dip. di Fisica, Milano, Italy)                |                                                                                                                                                                           |     |            |                                                 |
| Francesco Demartin (Università degli Studi di Milano, Dip. di Chimica, Milano, Italy) |                                                                                                                                                                           |     |            |                                                 |
| Joost Van Duijn (UCLM Campus Universitario, Albacete, Spain)                          |                                                                                                                                                                           |     |            |                                                 |
| Samuele Sanna* (Università di Pavia, Dip di Fisica, Pavia, Italy)                     |                                                                                                                                                                           |     |            |                                                 |

## **Report:**

In proposal N.33224 we planned to perform EXAFS and XANES measurements in transmission geometry at the Ru K-edge (22117 eV) on 7 powder pellets of

 $Y_{2-x}(Zn/Mg)_xRu_2O_7$  pyrochlores (with x= 0.00, 0.10, 0.15, 0.20 for each Y site doping). These multifunctional oxides are potentially useful as new cathodes in solid-oxide fuel cells (SOFCs) of intermediate temperature.

In order to accurately follow the behaviour of the local order and structure parameters as a function of temperature we aimed to measure accurate spectra at 18 different temperatures between 298 K and 10 K, thickening the points in the 40 K-85 K range (being the magnetic ordering transition 55 K<  $T_N$  < 77 K, for all the compositions).

The study as a function of temperature would help us to understand the interplay between the structural, magnetic and transport properties. We wanted to check whether any short-ranged structural change is at play around the magnetic transition and how it evolves as a function of doping by Zn or Mg at the Y site.

<u>March 2014</u>: During the first 10 shifts we experienced serious problems in thermoregulation and temperature stabilizing due to the presence of a leak in the cryostat cold head windows. Consequently, in those days we were able to acquire spectra only between 10 and 80 K on the four  $Y_{2-x}Zn_xRu_2O_7$  (with x= 0.00, 0.10, 0.15, 0.20) samples. After the cryostat change, a full

series of measurements was performed on the undoped compound in the 8 K-298 K range and on the Zn 20% doped one between 84 K and 298 K (Figure 1). No more experimental time remained to complete the planned measurements on the other two Zn-doped samples (see Figure 2) and on the four Mg-doped ones.

In Figure 1 we show that in the undoped compound a clear peak in the Debye-Waller  $\sigma^2(\text{Å}^2)$  factor appears in the temperature region around the magnetic transition temperature  $T_N = 77$  K suggesting the occurrence of a magneto-elastic coupling or of an additional local disorder. The obtained result is even more significative since in the literature neither a dynamic disorder nor a coupling between a magnetic and a structure transition were observed in these compounds previously studied by other structural techniques like diffraction. On the other hand, Raman data show an anomaly in the temperature dependence of a Raman-active mode thus assuming a spin-phonon coupling which can correspond with what we are seeing. We hypothesize that the observed additional local disorder could be due to the presence of different Ru-O interatomic distances in the RuO<sub>6</sub> octahedra. The model that seems to be the most suitable is based on four shorter and two longer Ru-O distances (~2.00 Å and 2.04 Å at high temperature, respectively).

In the re-scheduling beamtime (September 2014) we have measured also the other three samples:  $Y_{2-x}Zn_xRu_2O_7$  (with x= 0.10, 0.15, 0.20), in the 8 K-298 K range. The results (see Figure 2) show for x = 0.10 a remaining less intense peak in  $\sigma^2(Å^2)$  just above the  $T_N = 55$  K new transition temperature and something like a plateau for the other two compositions. Also the doped compounds  $\sigma^2$  behaviour deviates from a Debye-like local order model.

We hypothesize that Zn doping, due to the lower ionic radius of  $Zn^{2+}$  respect to that of  $Y^{3+}$  and to the different oxidation state, determines an increase in the octahedra distortion and a depression of the magnetic transition also observed in a less intense magnetoelastic local effect.



 $\sigma^2(Å^2)$  of Y<sub>2</sub>Ru<sub>2</sub>O<sub>7</sub>, determined from the single shell analysis as a function of temperature ( $T_N = 77$  K is the magnetic transition temperature for this composition).



Figure 2. Ru-O mean square relative displacement  $\sigma^2(\text{\AA}^2)$  of  $Y_{2-x}Zn_xRu_2O_7$  (with x= 0.10, 0.15, 0.20), determined from the single shell analysis as a function of temperature (inset:  $\sigma^2$  for the undoped sample is reported for comparison).