EUROPEAN SYNCHROTRON RADIATION FACILITY

INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

Experiment Report Form

ESRF	Experiment title: Compressibility studies of novel metal borides	Experiment number: HC 1331
Beamline:	Date of experiment:	Date of report:
ID15B	from: 16 Apr 2014 to: 19 Apr 2014	20.09.2022
Shifts: 9	Local contact(s): Michael Hanfland	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		
Prof. Dr. Natalia Doubrovinckaia		
Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Universitätstraβe 30, 95440, Bayreuth, Germany		
*Dr. Elena Bykova		
Bayerisches Geoinstitut, University of Bayreuth, Universitätstraße 30, 95440, Bayreuth, Germany		

Report:

The data was published in:

<u>Bykova, E.</u>, Gou, H., Bykov, M., Hanfland, M., Dubrovinsky, L., & Dubrovinskaia, N. (2015) Crystal structures and compressibility of novel iron borides Fe₂B₇ and Fe_xB₅₀ synthesized at high pressure and high temperature. *J. Solid State Chem.*, 230, 102–109. <u>http://dx.doi.org/10.1016/j.jssc.2015.06.040</u> **Abstract:**

Abstract:

We present here a detailed description of the crystal structures of novel iron borides, Fe_2B_7 and Fe_xB_{50} with various iron content (x = 1.01(1), 1.04(1), 1.32(1)), synthesized at high pressures and temperatures. As revealed by high-pressure single-crystal X-ray diffraction, the structure of Fe_2B_7 possesses short incompressible B–B bonds that results in high bulk modulus. Like similarly structured FeB₄ and MnB₄, Fe₂B₇ is as stiff as diamond in one crystallographic direction, while its volume compressibility is even lower than that of FeB₄ and MnB₄. Fe_xB₅₀ adopts the structure of the tetragonal δ -B, in which Fe atoms occupy an additional interstitial position. Fe_xB₅₀ does not show anisotropy in elastic behavior.

Bykova, E., Tsirlin, A. A., Gou, H., Dubrovinsky, L., & Dubrovinskaia, N. (2014) Novel non-magnetic hard boride Co₅B₁₆ synthesized under high pressure. *J. Alloys Compd.*, 608, 69–72. http://dx.doi.org/10.1016/j.jallcom.2014.04.104

Abstract:

A first cobalt boride with the Co:B ratio below 1:1, Co_5B_{16} , was synthesized under high-pressure high-temperature conditions. It has a unique orthorhombic structure (space group *Pmma*, a = 19.1736(12), b = 2.9329(1), and c = 5.4886(2) Å, R_1 (all data) = 0.037). The material is hard, paramagnetic, with a weak temperature dependence of magnetic susceptibility.