

ESRF	Experiment title: Acoustic mismatch due to nanoprecipitates in thermoelectric LAST alloys	Experiment number: HC-1666
Beamline:	Date of experiment:	Date of report:
ID18	from:09/10/2014 to: 09/15/2014	02/10/2015
Shifts:	Local contact(s):	Received at ESRF:
21	Dr.Dimitrios Bessas (email: <u>bessas@esrf.fr</u>)	
Names and affiliations of applicants (* indicates experimentalists):		
A.Jafari ¹ , R. P. Hermann ¹ , B.Klobes ¹ , R.Simon ¹ , I.Sergeev ²		
 ¹ Laboratory Forschungszentrum Juelich GmbH Institut fuer Streumethoden Institut fuer Festkoerperforschung Leo-Brandt-Strasse 52425 Juelich,Germany ² Laboratory Hasylab at DESY Notkestrasse 85 D - 22607 Hamburg, Germany 		

Report:

In the allocated beamtime we aimed to determine the influence of Te and Sb nanostructures in the $AgPb_mSbTe_{2+m}$ (LAST-m) compounds. Nuclear Inelastic Scattering (NIS) measurement utilizing high resolution monochromator provided us density of phonon states for both ¹²⁵Te and ¹²¹Sb resonances.

Since the resolution function is an important parameter for quality of results, we tried to improve the instrumental function of sapphire backscattering monochromator. In this experiment we obtain the instrumental function with FWHM=0.7 meV for both ¹²¹Sb and ¹²⁵Te nuclear resonance with energies of 37.13 And 35.40 keV, respectively.

Analysis of reduced density of phonon state (DPS), $g(E)/E^2$ allows us to find out the acoustic mismatch between PbTe matrix and Ag/Sb precipitates. We carried out experiment on one LAST3 (AgSbT₂)+(PbTe)₃, and two LAST18: (AgSbTe₂)+(PbTe)₁₈ samples obtained from different sources at two desired nuclear resonance of ¹²⁵Te and ¹²¹Sb. Understanding behaviour of these compounds demands further investigation and analysis.

- 1. MaJ, et al., Nat Nano, 2013. **8**(6): p. 445-451.
- 2. Pereira, P.B., et al., Solidi B-Basic Solid State Physics, 2013. **250**(7): p. 1300-1307.

Figure 1. Instrumental functions for ¹²¹Sb and ¹²⁵Te.

Figure 2. Partial Sb DPS of LAST and AST compounds at (top-left) and their corresponding reduced DPS (top-right). Partial DPS of LAST, AST [1] and PbTe [2] (bottom-left) and corresponding reduced DPS (bottom-right).

Estimated Debye levels of AST[1] and PbTe [2] are shown as filled box and green line, respectively.