· · · · ·		
$\overline{\text{ESRF}}$	Experiment title: Asymmetric ion solvation in critical solvents	Experiment number: SC-4140
Beamline: ID10	Date of experiment:from: 06-Mar-2015to: 10-Mar-2015	Date of report: 18-Feb-2016
Shifts: 12	Local contact(s): Oleg Konovalov	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists): Monika Witala* and Kim Nygård* Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden		

Report:

Recently observed anomalous interactions in critical binary aqueous solvents containing hydrophilic salt [1,2] have sparked significant interest, where one of the suggested mechanisms is governed by the unequal cation and anion partitioning due to their asymmetric solvation preferences [3]. However, such preferential ion solvation in critical water-oil mixtures has not yet been observed directly in a experiment.

Here we address experimentally the asymmetric solvation of hydrophilic ions in the critical binary mixtures. We probed ion distributions at the liquid-vapour interface of a critical solvent composed of water and 2,6-dimethylpyridine using grazing-incidence x-ray fluorescence (GIXF). We collected data for 10 mM of added hydrophilic potassium chloride (KCl) and at several degrees below the critical temperature (T_C) . The experiment was carried out using an incident x-ray energy of 8 keV.

Part of the obtained results have been published [4] providing direct experimental evidence for microscopic segregation of hydrophilic ions in the aqueous binary mixtures and therefore indicating the importance of preferential ion partitioning in the mentioned mechanism. Currently, a second manuscript is in preparation for publication, where we show a method of obtaining a relative difference in Gibbs adsorption between salt ions ($\Delta\Gamma_{\pm}$) by applying the GIXF technique. By evaluating the numerical value of $\Delta\Gamma_{\pm}$ the cation and anion segregation is further highlighted [5].

References:

[1] C. Hertlein, L. Helden, A. Gambassi, S. Dietrich, C. Bechinger, *Direct measurement of critical Casimir forces*, Nature **451**, 172 (2008).

[2] U. Nellen, J. Dietrich, L. Helden, S. Chodankar, K. Nygård, J.F. van der Veen,
C. Bechinger, *Salt-induced changes of colloidal interactions in critical mixtures*, Soft Matter 7, 5360 (2011).

[3] M. Bier, A. Gambassi, S. Dietrich, Local theory for ions in binary liquid mixtures,J. Chem. Phys. 137, 034504 (2012).

[4] M. Witala, R. Nervo, O. Konovalov, and K. Nygård, *Microscopic segregation of hydrophilic ions in critical binary aqueous solvents*, Soft Matter **11**, 5883 (2015).

[5] M. Witala, O. Konovalov, and K. Nygård, In preparation (2016).